zoukankan      html  css  js  c++  java
  • 2020牛客多校第三场D-Point Construction Problem

    https://ac.nowcoder.com/acm/contest/5668/D

    题意

    无穷大平面上,初始全是白点,问能否放置n个黑点,使得相邻的黑白点对的数目恰好为m,给出一种放置方法

    题解

    首先,如果m是奇数肯定无解,因为从每一行和每一列看过去,黑点的两侧必定有两个白点。

    显然一个黑点最多形成4个黑白点对,所以(m > 4n)也无解

    因为对于每一行黑点和每一列黑点,都贡献2的答案,所以我们可以遍历行数和列数,计算最小的答案,小于这个答案也无解。

    其余情况必定有解,我们先按答案最小时放置,之后取出点单独放置,答案会增加2或者增加4,如果增加4后答案超过m,则把单独放置的点重新摆到第一排即可。

    代码

    #include <bits/stdc++.h>
    #define pii pair<int, int>
    using namespace std;
    typedef long long ll;
    struct READ {
        inline char read() {
        #ifdef _WIN32
            return getchar();
        #endif
            static const int IN_LEN = 1 << 18 | 1;
            static char buf[IN_LEN], *s, *t;
            return (s == t) && (t = (s = buf) + fread(buf, 1, IN_LEN, stdin)), s == t ? -1 : *s++;
        }
        template <typename _Tp> inline READ & operator >> (_Tp&x) {
            static char c11, boo;
            for(c11 = read(),boo = 0; !isdigit(c11); c11 = read()) {
                if(c11 == -1) return *this;
                boo |= c11 == '-';
            }
            for(x = 0; isdigit(c11); c11 = read()) x = x * 10 + (c11 ^ '0');
            boo && (x = -x);
            return *this;
        }
    } in;
    
    const int N = 2e5 + 50;
    int main() {
        int t; in >> t;
        while (t--) {
            int n, m;
            in >> n >> m;
            if (m > 4 * n || (m & 1)) puts("No");
            else {
                
                int a, b, mn = 1e9;
                for (int i = 1; i <= n; i++) {
                    for (int j = 1; j <= n; j++) {
                        if (i * j >= n && (i + j) * 2 < mn) {
                            mn = 2 * (i + j);
                            a = i, b = j;
                        }
                    }
                }
                vector<pii> ans;
                vector<pii> ans2;
                int tmp = n;
                for (int i = 1; i <= a; i++) {
                    for (int j = 1; j <= b; j++) {
                        ans.push_back(pii(i, j));
                        tmp--;
                        if (tmp == 0) break;
                    }
                }
                int now = 2 * (a + b);
                if (m < now) {
                    puts("No");
                    continue;
                }
                puts("Yes");
                int x = 1e8, y = 1e8;
                while (now < m) {
                    pii p = ans.back();
                    if (p.second == 1 || p.first == 1) {
                        ans.pop_back();
                        now += 2;
                        ans2.push_back(pii(--x, --y));
                    }
                    else {
                        ans.pop_back();
                        now += 4;
                        ans2.push_back(pii(--x, --y));
                    }
                }
                if (now > m) {
                    ans2.pop_back();
                    pii p = ans.back();
                    ans.push_back(pii(p.first + 1, p.second));
                }
                for (auto e : ans) printf("%d %d
    ", e.first, e.second);
                for (auto e : ans2) printf("%d %d
    ", e.first, e.second);
            }
        }
        return 0;
    }
    
  • 相关阅读:
    WPF中各个Template的分析(转)
    WPF TreeView
    微信支付文章综合
    WPF 颜色渐变
    史上最全的厦门英语角!赶紧收藏啦!
    SQL008存储过程总结
    SQL SERVER事务处理
    HTTP 头部解释
    为你详细解读HTTP请求头的具体含意
    IIS部署常见问题总结
  • 原文地址:https://www.cnblogs.com/artoriax/p/13589527.html
Copyright © 2011-2022 走看看