zoukankan      html  css  js  c++  java
  • 002_Python多线程相当于单核多线程的论证

    很多人都说python多线程是假的多线程!下面进行论证解释:

    一、

      我们先明确一个概念,全局解释器锁(GIL)
      Python代码的执行由Python虚拟机(解释器)来控制。Python在设计之初就考虑要在主循环中,同时只有一个线程在执行,就像单CPU的系统中运行多个进程那样,内存中可以存放多个程序,但任意时刻,只有一个程序在CPU中运行。同样地,虽然Python解释器可以运行多个线程,只有一个线程在解释器中运行。

      对Python虚拟机的访问由全局解释器锁(GIL)来控制,正是这个锁能保证同时只有一个线程在运行。在多线程环境中,Python虚拟机按照以下方式执行。
        1.设置GIL。
        2.切换到一个线程去执行。
        3.运行。
        4.把线程设置为睡眠状态。
        5.解锁GIL。
        6.再次重复以上步骤。
      对所有面向I/O的(会调用内建的操作系统C代码的)程序来说,GIL会在这个I/O调用之前被释放,以允许其他线程在这个线程等待I/O的时候运行。如果某线程并未使用很多I/O操作,它会在自己的时间片内一直占用处理器和GIL。也就是说,I/O密集型的Python程序比计算密集型的Python程序更能充分利用多线程的好处。  

      我们都知道,比方我有一个4核的CPU,那么这样一来,在单位时间内每个核只能跑一个线程,然后时间片轮转切换。但是Python不一样,它不管你有几个核,单位时间多个核只能跑一个线程,然后时间片轮转。看起来很不可思议?但是这就是GIL搞的鬼。任何Python线程执行前,必须先获得GIL锁,然后,每执行100条字节码,解释器就自动释放GIL锁,让别的线程有机会执行。这个GIL全局锁实际上把所有线程的执行代码都给上了锁,所以,多线程在Python中只能交替执行,即使100个线程跑在100核CPU上,也只能用到1个核。通常我们用的解释器是官方实现的CPython,要真正利用多核,除非重写一个不带GIL的解释器。
      我们不妨做个试验:

    #coding=utf-8
    from threading import Thread
    
    def loop():
        while True:
            pass
    
    if __name__ == '__main__':
    
        for i in range(3):
            t = Thread(target=loop)
            t.start()
    
        while True:
            pass
    

    Windows状态如下:

    Mac状态如下:

      我们发现CPU利用率并没有占满,大致相当于单核水平。
      而如果我们变成进程呢?
      我们改一下代码:

    #coding=utf-8
    from multiprocessing import Process
    
    def loop():
        while True:
            pass
    
    if __name__ == '__main__':
    
        for i in range(3):
            t = Process(target=loop)
            t.start()
    
        while True:
            pass
    

     Windows状态如下:

    Mac状态如下:

     

      结果直接飙到了100%,说明进程是可以利用多核的!
      为了验证这是Python中的GIL搞得鬼,我试着用Java写相同的代码,开启线程,我们观察一下:

    package com.darrenchan.thread;
    
    public class TestThread {
        public static void main(String[] args) {
            for (int i = 0; i < 3; i++) {
                new Thread(new Runnable() {
    
                    @Override
                    public void run() {
                        while (true) {
    
                        }
                    }
                }).start();
            }
            while(true){
    
            }
        }
    }
    

     效果如下:

      由此可见,Java中的多线程是可以利用多核的,这是真正的多线程!而Python中的多线程只能利用单核,这是假的多线程!

      难道就如此?我们没有办法在Python中利用多核?当然可以!刚才的多进程算是一种解决方案,还有一种就是调用C语言的链接库。对所有面向I/O的(会调用内建的操作系统C代码的)程序来说,GIL会在这个I/O调用之前被释放,以允许其他线程在这个线程等待I/O的时候运行。我们可以把一些 计算密集型任务用C语言编写,然后把.so链接库内容加载到Python中,因为执行C代码,GIL锁会释放,这样一来,就可以做到每个核都跑一个线程的目的!

      可能有的小伙伴不太理解什么是计算密集型任务,什么是I/O密集型任务?

      计算密集型任务的特点是要进行大量的计算,消耗CPU资源,比如计算圆周率、对视频进行高清解码等等,全靠CPU的运算能力。这种计算密集型任务虽然也可以用多任务完成,但是任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以,要最高效地利用CPU,计算密集型任务同时进行的数量应当等于CPU的核心数。

      计算密集型任务由于主要消耗CPU资源,因此,代码运行效率至关重要。Python这样的脚本语言运行效率很低,完全不适合计算密集型任务。对于计算密集型任务,最好用C语言编写。

    第二种任务的类型是IO密集型,涉及到网络、磁盘IO的任务都是IO密集型任务,这类任务的特点是CPU消耗很少,任务的大部分时间都在等待IO操作完成(因为IO的速度远远低于CPU和内存的速度)。对于IO密集型任务,任务越多,CPU效率越高,但也有一个限度。常见的大部分任务都是IO密集型任务,比如Web应用。

      IO密集型任务执行期间,99%的时间都花在IO上,花在CPU上的时间很少,因此,用运行速度极快的C语言替换用Python这样运行速度极低的脚本语言,完全无法提升运行效率。对于IO密集型任务,最合适的语言就是开发效率最高(代码量最少)的语言,脚本语言是首选,C语言最差。
      综上,Python多线程相当于单核多线程,多线程有两个好处:CPU并行,IO并行,单核多线程相当于自断一臂。所以,在Python中,可以使用多线程,但不要指望能有效利用多核。如果一定要通过多线程利用多核,那只能通过C扩展来实现,不过这样就失去了Python简单易用的特点。不过,也不用过于担心,Python虽然不能利用多线程实现多核任务,但可以通过多进程实现多核任务。多个Python进程有各自独立的GIL锁,互不影响。

  • 相关阅读:
    记2008年7月25日午后 心情
    [多媒体]词典编码
    [多媒体]算术编码、游程编码
    [多媒体]数据压缩的类型
    [多媒体]理解PCM、DPCM、APCM、ADPCM
    C++异常处理
    [转]linux上SVN解决冲突的办法
    从海量数据查找有或者没有出现的数据
    八数码问题
    [转]linux中强大的screen命令
  • 原文地址:https://www.cnblogs.com/arun-python/p/10791732.html
Copyright © 2011-2022 走看看