zoukankan      html  css  js  c++  java
  • leetcode17

    回溯法,深度优先遍历(DFS)

    public class Solution
        {
            int[] x;
            int N;
            string DIGITS;
            Dictionary<char, List<string>> dic = new Dictionary<char, List<string>>();
            List<string> LIST = new List<string>();
            private void BackTrack(int t)
            {
                if (t >= N)
                {
                    StringBuilder sb = new StringBuilder();
                    for (int i = 0; i < N; i++)
                    {
                        var dkey = DIGITS[i];
                        var temp = dic[dkey][x[i]];
                        sb.Append(temp);
                    }
                    LIST.Add(sb.ToString());
                    return;
                }
                for (int i = 0; i < dic[DIGITS[t]].Count; i++)
                {
                    x[t] = i;
                    BackTrack(t + 1);
                }
            }
            private void Init()
            {
                dic.Add('2', new List<string> { "a", "b", "c" });
                dic.Add('3', new List<string> { "d", "e", "f" });
                dic.Add('4', new List<string> { "g", "h", "i" });
                dic.Add('5', new List<string> { "j", "k", "l" });
                dic.Add('6', new List<string> { "m", "n", "o" });
                dic.Add('7', new List<string> { "p", "q", "r", "s" });
                dic.Add('8', new List<string> { "t", "u", "v" });
                dic.Add('9', new List<string> { "w", "x", "y", "z" });
            }
            public IList<string> LetterCombinations(string digits)
            {
                var n = digits.Length;
                if (n > 0)
                {
                    Init();
                    N = n;
                    x = new int[n];
                    DIGITS = digits;
                    BackTrack(0);
                }
                return LIST;
            }
        }

    提供一种更直接的思路:

     1 public class Solution {
     2     public IList<string> LetterCombinations(string digits) {
     3         var combinations = new List<string>();
     4         
     5         if(string.IsNullOrEmpty(digits))
     6             return combinations;
     7         
     8         combinations.Add("");
     9         foreach(char digit in digits) {
    10             var next = new List<string>();
    11             
    12             foreach(char letter in GetLetters(digit)) {
    13                 foreach(string combo in combinations) {
    14                     next.Add(combo + letter);
    15                 }
    16             }
    17             combinations = next;
    18         }
    19         return combinations;
    20     }
    21     
    22     public char[] GetLetters(char digit) {
    23         switch (digit) {
    24             case '2':
    25                 return new char[] { 'a', 'b', 'c' };
    26             case '3':
    27                 return new char[] { 'd', 'e', 'f' };
    28             case '4':
    29                 return new char[] { 'g', 'h', 'i' };
    30             case '5':
    31                 return new char[] { 'j', 'k', 'l' };
    32             case '6':
    33                 return new char[] { 'm', 'n', 'o' };
    34             case '7':
    35                 return new char[] { 'p', 'q', 'r', 's' };
    36             case '8':
    37                 return new char[] { 't', 'u', 'v' };
    38             case '9':
    39                 return new char[] { 'w', 'x', 'y', 'z' };
    40             default:
    41                 return new char[0];
    42         }
    43     }
    44 }

    补充一个python的实现:

     1 class Solution:
     2     def backTrack(self,digits,dic,temp,res,i):
     3         if i == len(digits):
     4             res.append(''.join(temp[:]))
     5             return
     6         
     7         key = digits[i]
     8         li = dic[key]
     9         for j in range(len(li)):
    10             temp.append(li[j])
    11             self.backTrack(digits,dic,temp,res,i+1)
    12             temp.pop(-1)
    13         
    14         
    15     def letterCombinations(self, digits: 'str') -> 'List[str]':
    16         n = len(digits)
    17         if n == 0:
    18             return []
    19         res = []
    20         dic = {'2':['a','b','c'],'3':['d','e','f'],'4':['g','h','i'],
    21               '5':['j','k','l'],'6':['m','n','o'],'7':['p','q','r','s'],'8':['t','u','v'],'9':['w','x','y','z']}
    22         self.backTrack(digits,dic,[],res,0)
    23             
    24         return res

    思路:回溯法。

    回溯函数的参数含义:

    digits:原字符串,dic:按键字典,temp:字母组合的临时存储,res:最终结果的列表,i:digits的索引。

  • 相关阅读:
    远程支付技术方案
    软件架构设计(第2版)——程序员向架构师转型必备
    概念架构是什么
    项目报警机制
    编写有效用例
    移动支付的基本要素
    相机的日常维护和保养注意事项
    吴炜摄影教程随堂笔记1
    D80使用心得3
    项目沟通管理识别干系人
  • 原文地址:https://www.cnblogs.com/asenyang/p/9745366.html
Copyright © 2011-2022 走看看