zoukankan      html  css  js  c++  java
  • Examples of complexity pattern

    O(1):constant - the operation doesn't depend on the size of its input, e.g. adding a node to the tail of a linked list where we always maintain a pointer to the tail node.
    int i=0;
    i++;
    ++i;
    i+=6;
    O(n):linear - the run time complexity is proportionate to the size of n.
    int i,n=100,s=0;
    for(i=0;i<n;i++)
    {
    s+=1;
    }
    O(n2):quadratic - the run time complexity is proportionate to the square of size of n, e.g., bubble sort.
    int i,j,n=100,s=0;
    for(i=0;i<n;i++)
    {
    for(j=0;j<n;j++)
    {
    s+=1;
    }

    }
    O(n3):cubic - very rare.
    int i,j,k,n=100,s=0;
    for(i=0;i<n;i++)
    {
    for(j=0;j<n;j++)
    {
    for(k=0;k<n;k++)
    {
    s+=1;
    }
    }
    }
    O(logmn): logarithmic: normally associated with algorithms that break the problem into smaller chunks per each invocation, e.g. searching a binary search tree.
    int i,n=100,m=2; /* m could be any number, e.g.,2,10 */
    for(i=0;i<n;i++)
    {
    i=i*m;
    }
    O(nlogn): just nlogn: usually associated with an algorithm that breaks the problem into smaller chunks per each invocation, and then takes the results of these smaller chunks and stitches them back together, e.g. quick sort.
    int i,n=100;

    int m_expo(int m)
    {
    /* an auxilary function that return the value
    of m to the mth exponential, not included to the
    time consumation*/

    int k = m;
    for(j=1;j<m;j++)
    {
    /* 2 could also be other number */
    k = k * k;
    }
    return k;
    }

    /* this is the part whose consumation is O(nlogn) */
    for(i=0;i<m_expo(n);i++)
    {
    /* 10 could be other number */
    i=i*10;
    }
    O(n1/2): square root.
    int i,n=100;
    while(i*i<n)
    {
    i++;
    }
    O(2n):exponential - incredibly rare.
    int i,n=100;
    int expo(int m)
    {
    /* an auxilary function that return the value
    of 2 to the mth exponential, not included to the
    time consumation*/

    int k =1;
    for(j=1;j<m;j++)
    {
    /* 2 could also be other number */
    k = k * 2;
    }
    return k;
    }

    /* this is the part whose consumation is O(2n)) */
    while(i<expo(n))
    {
    i++;
    }
    O(n!):factorial - incredibly rare.
    int i,n=100;
    int factorial(int m)
    {
    /* an auxilary function that return the
    factorial value of m */

    int k =1;
    for(j=1;j<=m;j++)
    {
    /* 2 could also be other number */
    k = j * k;
    }
    return k;
    }

    /* this is the part whose consumation is O(n!) */
    while(i<factorial(n))
    {
    i++;
    }
    O(nn):not exist in real life.
    int i,n=100;
    int mm_expo(int m)
    {
    /* an auxilary function that return the value
    of m to the mth exponential, not included to the
    time consumation*/

    int k = m;
    for(j=1;j<m;j++)
    {
    k = k * m;
    }
    return k;
    }

    /* this is the part whose consumation is O(nn)) */
    while(i<mm_expo(n))
    {
    i++;
    }

  • 相关阅读:
    MVC页面打印成pdf插件Rotativa
    lambda表达式嵌套
    MVC+EF五种条件查询获取数据列表方式
    自己写的通用分页存储过程
    Llinux命令大全之软件管理命令
    .net开发 chrome核心浏览器组件
    常用的SQL日期操作
    Linux各版本介绍说明
    大数据环境搭建
    markdown语法链接新页面打开
  • 原文地址:https://www.cnblogs.com/askDing/p/5971360.html
Copyright © 2011-2022 走看看