zoukankan      html  css  js  c++  java
  • python 人脸识别(通过摄像头)

    1、人脸检测

    # 打开摄像头,监测人脸
    import cv2 as cv
    
    
    def face_detect(frame):
        # 图片转灰度
        img_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
        # 加载人脸分类识别器
        face_detector = cv.CascadeClassifier(r'../haarcascade/haarcascade_frontalface_default.xml')
        faces = face_detector.detectMultiScale(img_gray)
        for x, y, w, h in faces:
            cv.rectangle(frame, (x, y), (x + w, y + h), color=(0, 255, 0), thickness=1)
        cv.imshow("detecting", frame)
    
    
    if __name__ == '__main__':
        # 读取摄像头中的图像,获取图像grabbed为true
        cap = cv.VideoCapture(0)
        while True:
            grabbed, img = cap.read()
            if grabbed:
                print("frame:", img.shape)
            else:
                break
            face_detect(img)
            if ord('q') == cv.waitKey(10):
                break
        cv.destroyAllWindows()
        cap.release()

    2、人脸采集

    # 通过摄像头识别人脸,采集人脸图片保存到face_data目录
    
    import cv2 as cv
    
    
    def face_collect(face_id, username):
        print('
     正在初始化脸部识别,请保持在摄像头前面 ...')
        count = 0
        filename = ""
        # 读取内置摄像头中的图像,获取图像grabbed为true
        cap = cv.VideoCapture(0)
        # 加载人脸分类识别器
        face_detector = cv.CascadeClassifier(r'../haarcascade/haarcascade_frontalface_default.xml')
    
        while True:
            grabbed, img = cap.read()
            if grabbed:
                print("frame:", img.shape)
            else:
                break
            # 图片转灰度
            img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
            faces = face_detector.detectMultiScale(img_gray)
            for x, y, w, h in faces:
                cv.rectangle(img, (x, y), (x + w, y + h), color=(0, 255, 0), thickness=1)
                count += 1
                # 保存图像
                filename = r"../face_data/" + username + "." + str(face_id) + '.' + str(count) + '.jpg'
                print(filename)
                cv.imwrite(filename, img_gray[y: y + h, x: x + w])
            cv.imshow("detecting", img)
    
            if ord('q') == cv.waitKey(10):
                break
            elif count > 100:
                break
    
        cv.destroyAllWindows()
        cap.release()
    
    
    if __name__ == '__main__':
        user_id = input('
     输入用户ID:')
        user_name = input('
     输入用户英文名:')
        face_collect(user_id, user_name)

    3、人脸训练

    # 人脸训练
    import numpy as np
    from PIL import Image
    import os
    import cv2 as cv
    
    
    def face_training():
        print("人脸训练,请耐心等待 ...")
        # 人脸图片路径
        face_path = '../face_data/'
        # opencv-contrib-python包中的函数
        recognizer = cv.face.LBPHFaceRecognizer_create()
        # 载入人脸分类器
        face_detector = cv.CascadeClassifier(r"../haarcascade/haarcascade_frontalface_default.xml")
    
        image_paths = [os.path.join(face_path, f) for f in os.listdir(face_path)]
        face_samples = []
        ids = []
        for imagePath in image_paths:
            img_gray = Image.open(imagePath).convert('L')
            img_numpy = np.array(img_gray, 'uint8')
            # 图片的命名方式 xx.id.num.ext(xx为任意英文标识,id是标签,同类人脸id相同,num一般为该类图片的计数,ext为图片后缀)
            # 文件名中关键就是id,作为有监督学习,id就是用于分类
            user_id = int(os.path.split(imagePath)[-1].split(".")[1])
            print(user_id, " ", imagePath)
            faces = face_detector.detectMultiScale(img_numpy)
            for x, y, w, h in faces:
                face_samples.append(img_numpy[y:y + h, x:x + w])
                ids.append(user_id)
        recognizer.train(face_samples, np.array(ids))
    
        # 保存训练信息
        recognizer.write('../face_trainer/trainer.yml')
        print("{0} faces trained. Exiting Program".format(len(np.unique(ids))))
    
    
    if __name__ == '__main__':
        face_training()

    4、人脸识别

    # 从视频中识别人脸
    import cv2 as cv
    
    
    def face_recognition():
        recognizer = cv.face.LBPHFaceRecognizer_create()
        # 读取训练数据
        recognizer.read('../face_trainer/trainer.yml')
        face_detector = cv.CascadeClassifier(r"../haarcascade/haarcascade_frontalface_default.xml")
        font = cv.FONT_HERSHEY_SIMPLEX
    
        feature_id = None
        # 以训练的时候,按人脸id进行排序
        names = ['xudemin', 'wanghaojin', 'heyinsong', 'linanan']
    
        cap = cv.VideoCapture(0)
        # minW = 0.1*cap.get(3)
        # minH = 0.1*cap.get(4)
    
        while True:
            grabbed, img = cap.read()
            if grabbed:
                print("frame:", img.shape)
            else:
                break
            # 图片转灰度
            img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
            faces = face_detector.detectMultiScale(img_gray)
            for x, y, w, h in faces:
                cv.rectangle(img, (x, y), (x + w, y + h), color=(0, 255, 0), thickness=1)
                # 预测
                feature_id, confidence = recognizer.predict(img_gray[y:y + h, x:x + w])
                print(feature_id, " ", confidence)
                if confidence < 100:
                    feature_id = names[feature_id]
                    confidence = "{0}%".format(round(100 - confidence))
                else:
                    feature_id = "unknown"
                    confidence = "{0}%".format(round(100 - confidence))
    
                cv.putText(img, str(feature_id), (x + 5, y - 5), font, 1, (0, 0, 255), 1)
                cv.putText(img, str(confidence), (x + 5, y + h - 5), font, 1, (0, 255, 0), 1)
    
            cv.imshow("recognizing", img)
            if ord('q') == cv.waitKey(10):
                break
    
        cv.destroyAllWindows()
        cap.release()
    
    
    if __name__ == '__main__':
        face_recognition()
  • 相关阅读:
    JAVA中变量的类型及命名规范
    JAVA、JDK等入门概念,下载安装JAVA并配置环境变量
    大家好,我是一个JAVA初学者,想在这里记下自己学习过程中的点点滴滴,请多多关照
    多线程并发问题解决之redis锁
    设计模式之动态代理
    设计模式之静态代理
    spring之IOC模拟实现
    spring boot+kafka整合
    metrics+spring+influxdb整合
    MongoError: no primary found in replicaset
  • 原文地址:https://www.cnblogs.com/asker009/p/12558461.html
Copyright © 2011-2022 走看看