题意:
开始你有数字$0$,你可以用代价$x$将该数字加$1$或减$1$(当$x > 0$时),或用代价$y$将该数字变为$2x$,那么问得到数字$n$所需的最少代价是多少。
数据范围$1 leq x, y leq 10^9$,$1 leq n leq 10^7$。
分析:
记得到数字$n$的代价为$f(n)$。
不加证明地给出如下结论:
注:可以通过观察数的二进制表达形式归纳证明下面的结论。
若$x = y$,则
$1^{circ}$若$n$为偶数,则$f(n) = f(frac{n}{2}) + y$ $(*)$
$2^{circ}$若$n$为奇数,则$f(n) = min(f(n - 1), f(n + 1)) + x$ $(#)$
把$(*)$当作主式,用$(#)$式作为递推中间项,很容易计算出所有偶数位置对应的$f$值,从而计算出所有$f$值。
当$x, y$大小关系不确定时,我们只需修改偶数情况的更新规则。当$n$为偶数时,为了计算$f(n)$,需要归约到$f(1) = x$,在此过程中如果用到加倍操作,那么在当前位置
用效果必然最好(直观上如此,实际也可证明),否则就不用加倍操作。使用加倍操作后转移到$f(n / 2)$,代价为$y$,而不用加倍操作转移到$f(n / 2)$时代价为$x cdot frac{n}{2}$,使用加倍操作当且仅当$y <= x cdot frac{n}{2}$,因此将$(*)$更新为:
若$y <= x cdot frac{n}{2}$,$f(n) = f(frac{n}{2}) + y$
否则$f(n) = n cdot x$
可以用记忆话搜索来处理答案,空间复杂度$O(n)$,时间复杂度$O(log(n))$。
此外,还可以通过使用队列首先更新花费代价较小的位置来寻找答案,时间复杂度是$O(n)$,类似于$ ext{bfs}$的过程。
#include <algorithm> #include <cstdio> #include <cstring> #include <string> #include <queue> #include <map> #include <set> #include <stack> #include <ctime> #include <functional> #include <cmath> #include <iostream> #include <assert.h> #pragma comment(linker, "/STACK:102400000,102400000") #define max(a, b) ((a) > (b) ? (a) : (b)) #define min(a, b) ((a) < (b) ? (a) : (b)) #define mp std :: make_pair #define st first #define nd second #define keyn (root->ch[1]->ch[0]) #define lson (u << 1) #define rson (u << 1 | 1) #define pii std :: pair<int, int> #define pll pair<ll, ll> #define pb push_back #define type(x) __typeof(x.begin()) #define foreach(i, j) for(type(j)i = j.begin(); i != j.end(); i++) #define FOR(i, s, t) for(int i = (s); i <= (t); i++) #define ROF(i, t, s) for(int i = (t); i >= (s); i--) #define dbg(x) std::cout << x << std::endl #define dbg2(x, y) std::cout << x << " " << y << std::endl #define clr(x, i) memset(x, (i), sizeof(x)) #define maximize(x, y) x = max((x), (y)) #define minimize(x, y) x = min((x), (y)) using namespace std; typedef long long ll; const int int_inf = 0x3f3f3f3f; const ll ll_inf = 0x3f3f3f3f3f3f3f3f; const int INT_INF = (int)((1ll << 31) - 1); const double double_inf = 1e30; const double eps = 1e-14; typedef unsigned long long ul; typedef unsigned int ui; inline int readint() { int x; scanf("%d", &x); return x; } inline int readstr(char *s) { scanf("%s", s); return strlen(s); } class cmpt { public: bool operator () (const int &x, const int &y) const { return x > y; } }; int Rand(int x, int o) { //if o set, return [1, x], else return [0, x - 1] if (!x) return 0; int tem = (int)((double)rand() / RAND_MAX * x) % x; return o ? tem + 1 : tem; } ll ll_rand(ll x, int o) { if (!x) return 0; ll tem = (ll)((double)rand() / RAND_MAX * x) % x; return o ? tem + 1 : tem; } void data_gen() { srand(time(0)); freopen("in.txt", "w", stdout); int kases = 1; //printf("%d ", kases); while (kases--) { ll sz = 100000; printf("%d ", sz); FOR(i, 1, sz) { int o = Rand(2, 0); int O = Rand(26, 0); putchar(O + (o ? 'a' : 'A')); } putchar(' '); } } const int maxn = 1e7 + 10; ll n, x, y; ll dp[maxn]; ll cal(ll num) { if (dp[num] != -1) return dp[num]; if (num == 1) return dp[num] = x; if (num & 1) return dp[num] = x + min(cal(num - 1), cal(num + 1)); if ((num >> 1) * x >= y) return dp[num] = y + cal(num >> 1); else return dp[num] = num * x; } int main() { //data_gen(); return 0; //C(); return 0; int debug = 0; if (debug) freopen("in.txt", "r", stdin); //freopen("out.txt", "w", stdout); while (~scanf("%lld%lld%lld", &n, &x, &y)) { clr(dp, -1); ll ans = cal(n); printf("%lld ", ans); } return 0; } //382 81437847 324871127