zoukankan      html  css  js  c++  java
  • 变分法

    变分法


    函数(y(x))对于任意给定的输入变量(x),给出输出值(y);类似地,定义关于函数的函数(F[y]),亦称泛函,给定函数(y),输出值为(F)。熵( ext{H}[x])也是泛函的一种,它定义在概率密度函数(p(x))上,可等价记为( ext{H}[p])

    泛函中变分法类似于函数中求极值点,即寻求某个最大化或最小化泛函(F[y])的函数(y(x))。利用变分法可证明两点之间的最短路径为直线以及最大熵分布为高斯分布。

    对于多元函数(y(mathbf{x})=y(x_1,...,x_D)),其泰勒展开为

    [y(mathbf{x}+oldsymbolepsilon)=y(mathbf{x})+oldsymbolepsilon^ ext{T}frac{partial y}{partial mathbf{x}}+O(VertoldsymbolepsilonVert^2). ]

    对于某个泛函(F[y]),考虑(y(x))上的微小改变(epsiloneta(x)),其中(eta(x))为任意函数,对比上式,将(mathbf{x})展开到无限维,从而

    [F[y(x)+epsiloneta(x)]=F[y(x)]+int frac{delta F}{delta y(x)}epsiloneta(x){ m{d}}x+O(epsilon^2), ]

    其中(delta F/delta y(x))为泛函梯度。

    为了使(F[y])取得极值,上式一阶条件为

    [egin{aligned}lim_{epsilon ightarrow 0}frac{ int frac{delta F}{delta y(x)}epsiloneta(x){ m{d}}x}{epsilon}&=int frac{delta F}{delta y(x)}eta(x){ m{d}}x \&=0, end{aligned}]

    注意到(eta(x))选取的任意性,可得泛函梯度需要处处为零,即

    [frac{delta F}{delta y(x)}equiv 0. ]

    考虑以下实例,泛函(F[y])定义如下

    [F[y]=int G(y(x),y'(x),x) ext{ d}x, ]

    并且假定(y(x))在积分边界上值为常数,从而在积分边界上(eta(x)=0)
    考虑(y(x))上的变分

    [egin{aligned} F[y(x)+epsiloneta(x)]&= int Gleft(y(x)+epsilon eta(x),y'(x)+epsiloneta'(x),x ight) ext{ d} x\&= intleft{Gleft(y(x),y'(x),x ight)+frac{partial G}{partial y}epsiloneta(x)+frac{partial G}{partial y'}epsiloneta'(x) ight} ext{ d}x+O(epsilon^2)\&= F[y(x)]+epsilonintleft{frac{partial G}{partial y}eta(x)+frac{partial G}{partial y'}eta'(x) ight} ext{ d}x+O(epsilon^2) end{aligned}]

    注意到

    [egin{aligned} int frac{partial G}{partial y'}eta'(x) ext{ d}x&=int frac{partial G}{partial y'} ext{ d}eta(x)\&= eta(x)frac{partial G}{partial y'}Bigvert-inteta(x)frac{ ext{d}}{ ext{d}x}left(frac{partial G}{partial y'} ight) ext{ d}x\&= -inteta(x)frac{ ext{d}}{ ext{d}x}left(frac{partial G}{partial y'} ight) ext{ d}x end{aligned}]

    带入上式,整理得

    [egin{aligned} F[y(x)+epsiloneta(x)]&=F[y(x)]+epsilonintleft{frac{partial G}{partial y}-frac{ ext{d}}{ ext{d}x}left(frac{partial G}{partial y'} ight) ight}eta(x) ext{ d}x+O(epsilon^2), end{aligned}]

    令泛函梯度为零

    [frac{partial G}{partial y}-frac{ ext{d}}{ ext{d}x}left(frac{partial G}{partial y'} ight)=0, ]

    余下步骤可用微分方程求解。

  • 相关阅读:
    表现层(jsp)、持久层(类似dao)、业务层(逻辑层、service层)、模型(javabean)、控制层(action)
    理解HTTP session原理及应用
    “不同浏览器对于同一域名的并发获取(加载)资源数是有限的”
    URL编码与解码
    URL和URI的区别与联系
    spring 源代码地址
    java_ant详解
    Struts2 Convention插件的使用
    Struts2的@ResultPath
    Java Annotation原理分析(一)
  • 原文地址:https://www.cnblogs.com/astoninfer/p/9322556.html
Copyright © 2011-2022 走看看