zoukankan      html  css  js  c++  java
  • [USACO19FEB]Moorio Kart

    题目

    我们的神仙教练在考试里放了这道题,当时我非常惊讶啊

    背包是(O(n^3))的吧明明是带根号的好吧,那既然要优化的话

    NTT!什么时候我们教练会在考试里放多项式了

    模数(1e9+7)

    任意模数不存在的,我们开int128找一个大一点的(NTT)模数就可以了

    还是说一下(NTT)的做法吧,发现我们要求长度大于(Y)的路径可能不太好求,于是我们正难则反一下,我们求出有多少种拼法可以使得路径长度小于(Y)就可以了

    每一棵树里只能出一条路径,于是我们可以把一棵树的路径信息搞成一个多项式,系数代表这种长度的路径出现了多少次

    我们把每棵树的多项式卷起来就是最后的答案了

    并不保证随时能通过而且我们不怎么能看懂的代码

    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #define re register
    #define _LL __int128
    #define LL long long
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #pragma GCC optimize(3)
    #pragma GCC optimize("-fcse-skip-blocks")
    #pragma GCC optimize("Ofast,no-stack-protector")
    char BB[1<<18],*S=BB,*T=BB; 
    const int maxn=1505;
    inline int read() {
        char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
        while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
    }
    struct E{int v,nxt,w;}e[maxn<<1];
    const LL mod=4222124650659841;
    const LL P=1e9+7;
    _LL G[2],t,og;
    _LL mi[2][16];
    int head[maxn],sum[maxn];
    int n,m,X,Y,tot,num;
    int rev[10000],len,fa[maxn],vis[maxn],pre[maxn];
    int tax[1501][2501];LL tp[maxn];
    _LL A[9000],B[9000];
    LL tmp=1,k=0;
    inline void add(int x,int y,int w) {
        e[++num].v=y;e[num].nxt=head[x];
        head[x]=num;e[num].w=w;
    }
    inline _LL ksm(_LL a,LL b) {
        _LL S=1;
        while(b) {if(b&1ll) S=S*a%mod;b>>=1ll;a=a*a%mod;}
        return S;
    }
    void exgcd(LL a,LL b,LL &x,LL &y) {
        if(!b) {x=1,y=0;return;}
        exgcd(b,a%b,y,x);
        y-=a/b*x;
    }
    inline LL getInv(LL a) {
        LL x,y;exgcd(a,P,x,y);
        return (x%P+P)%P;
    }
    void write(LL x){
    	if(x==0){putchar(48);return;}
    	int len=0,dg[25];
    	while(x>0){dg[++len]=x%10ll;x/=10ll;}
    	for(int i=len;i>=1;i--)putchar(dg[i]+48);
    }
    inline void NTT(_LL *f,int o) {
        for(re int i=0;i<len;i++) if(i<rev[i]) std::swap(f[i],f[rev[i]]);
        for(re int i=2,k=0;i<=len;i<<=1,k++) {
            int ln=i>>1;
            LL og1;
            if(!mi[o][k]) {mi[o][k]=og1=ksm(G[o],(mod-1)/i);}
            else og1=mi[o][k];
            for(re int l=0;l<len;l+=i) {
            	og=1;
                for(re int x=l;x<ln+l;++x) {
                    t=(f[ln+x]*og)%mod;
                    f[ln+x]=(f[x]-t+mod)%mod;
                    f[x]=(f[x]+t)%mod;
                    og=(og*og1)%mod;
                }
            }
        }
        if(!o) return;
        _LL inv=ksm(len,mod-2);
        for(re int i=0;i<len;i++) f[i]=(f[i]*inv)%mod;
    }
    void dfs(int x,int Fa) {
        ++k;
        fa[x]=Fa;vis[x]=1;
        for(re int i=head[x];i;i=e[i].nxt) {
            if(vis[e[i].v]) continue;
            dfs(e[i].v,Fa); 
        }
    }
    void Dfs(int x,int fa,int p) {
        for(re int i=head[x];i;i=e[i].nxt) {
            if(e[i].v==fa) continue;
            pre[e[i].v]=pre[x]+e[i].w;
            if(pre[e[i].v]<Y) tax[p][pre[e[i].v]]++;
                else tp[p]+=pre[e[i].v];
            Dfs(e[i].v,x,p);
        }
    }
    inline void mul() {
        NTT(A,0),NTT(B,0);
        for(re int i=0;i<len;i++) A[i]=(A[i]*B[i])%mod;
        NTT(A,1);
        for(re int i=0;i<Y;i++) A[i]%=P;
        //中间取模的简易版任意模数NTT
        for(re int i=Y;i<len;i++) A[i]=0;
    }
    int main() {
        G[0]=19ll,G[1]=ksm(19ll,mod-2);
        n=read(),m=read(),X=read(),Y=read();
        for(re int x,y,z,i=1;i<=m;i++)
            x=read(),y=read(),z=read(),add(x,y,z),add(y,x,z);
        LL cnt=0,H=0,T=0;
        for(re int i=1;i<=n;i++)
        if(!vis[i]) {
            k=0;++tot,dfs(i,tot); 
            k=k*(k-1ll)/2ll;sum[tot]=k;
            tmp=(tmp*k)%P;
        }
        Y-=tot*X;
        for(re int i=1;i<=n;i++) pre[i]=0,Dfs(i,0,fa[i]);
        A[0]=1;len=1;while(len<Y+Y) len<<=1;
        for(re int i=0;i<len;i++) rev[i]=rev[i>>1]>>1|((i&1)?len>>1:0);
        for(re int i=1;i<=tot;i++) {
            for(re int j=0;j<len;j++) B[j]=0;
            LL inv=tmp*getInv(sum[i])%P;
            for(re int j=0;j<Y;j++) {
                B[j]=(tax[i][j]/2);
                H+=(inv*(LL)j%P*(LL)(tax[i][j]/2ll)%P);
                H%=P;
            }
            H+=inv*(tp[i]/2ll)%P;H%=P;
            mul();
        }
        //H是所有环的长度和,tmp是所有环的方案数
        //cnt是不满足条件的环的方案数,T是不满足条件的环的长度和
        for(re int i=1;i<Y;i++) 
            cnt=(cnt+A[i])%P,T=(T+A[i]*(LL)i%P)%P;
        H=(H-T+P)%P;
        tmp=(tmp-cnt+P)%P;
        H+=tmp*(LL)tot%P*(LL)X%P;H%=P;
        if(tot==1) {write(H);return 0;}
        if(tot==2) write(H*2ll%P);
        else {
            LL pw=2,now=4;tot-=2;
            for(re int i=1;i<=tot;i++)
                pw=(pw*now)%P,now=(now+2ll)%P;
            write(H*pw%P);
        }
        return 0;
    }
    
  • 相关阅读:
    汉语-词语:隐忍
    阿里云-ONS-Help-产品介绍-消息类型:事务消息
    阿里云-ONS-Help-产品介绍-消息类型:顺序消息
    阿里云-ONS-Help-产品介绍-消息类型:定时和延时消息
    阿里云-ONS-Help-产品介绍-消息类型:普通消息
    阿里云-ONS-Help-产品介绍-功能与特性:功能与特性概述
    动态拼接tr,th
    instr动态模糊查询
    easyui的combobox模糊搜索
    combobox的js添加数据
  • 原文地址:https://www.cnblogs.com/asuldb/p/10603942.html
Copyright © 2011-2022 走看看