zoukankan      html  css  js  c++  java
  • 使用 Estimator 构建卷积神经网络

    1,tf.layers基础函数

    • conv2d(). Constructs a two-dimensional convolutional layer. Takes number of filters, filter kernel size, padding, and activation function as arguments.
    • max_pooling2d(). Constructs a two-dimensional pooling layer using the max-pooling algorithm. Takes pooling filter size and stride as arguments.
    • dense(). Constructs a dense layer. Takes number of neurons and activation function as arguments.

    2,cnn_model_fn function, which conforms to the interface expected by TensorFlow's Estimator API

    def cnn_model_fn(features, labels, mode):
    """Model function for CNN."""
    # Input Layer
    input_layer = tf.reshape(features["x"], [-1, 28, 28, 1])

    # Convolutional Layer #1
    conv1 = tf.layers.conv2d(
    inputs=input_layer,
    filters=32,
    kernel_size=[5, 5],
    padding="same",
    activation=tf.nn.relu)

    # Pooling Layer #1
    pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)

    # Convolutional Layer #2 and Pooling Layer #2
    conv2 = tf.layers.conv2d(
    inputs=pool1,
    filters=64,
    kernel_size=[5, 5],
    padding="same",
    activation=tf.nn.relu)
    pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)

    # Dense Layer
    pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64])
    dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)
    dropout = tf.layers.dropout(
    inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN)

    # Logits Layer
    logits = tf.layers.dense(inputs=dropout, units=10)

    predictions = {
    # Generate predictions (for PREDICT and EVAL mode)
    "classes": tf.argmax(input=logits, axis=1),
    # Add `softmax_tensor` to the graph. It is used for PREDICT and by the
    # `logging_hook`.
    "probabilities": tf.nn.softmax(logits, name="softmax_tensor")
    }

    if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

    # Calculate Loss (for both TRAIN and EVAL modes)
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)

    # Configure the Training Op (for TRAIN mode)
    if mode == tf.estimator.ModeKeys.TRAIN:
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
    train_op = optimizer.minimize(
    loss=loss,
    global_step=tf.train.get_global_step())
    return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)

    # Add evaluation metrics (for EVAL mode)
    eval_metric_ops = {
    "accuracy": tf.metrics.accuracy(
    labels=labels, predictions=predictions["classes"])
    }
    return tf.estimator.EstimatorSpec(
    mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)

    3,input layer

    Here, our MNIST dataset is composed of monochrome 28x28 pixel images, so the desired shape for our input layer is [batch_size, 28, 28, 1].

    Note that we've indicated -1 for batch size, which specifies that this dimension should be dynamically computed based on the number of input values in features["x"], holding the size of all other dimensions constant. This allows us to treat batch_size as a hyperparameter that we can tune. For example, if we feed examples into our model in batches of 5, features["x"] will contain 3,920 values (one value for each pixel in each image), and input_layer will have a shape of [5, 28, 28, 1]. Similarly, if we feed examples in batches of 100, features["x"] will contain 78,400 values, and input_layer will have a shape of [100, 28, 28, 1]

    4,创建Estimator

    # Create the Estimator
    mnist_classifier = tf.estimator.Estimator(
    model_fn=cnn_model_fn, model_dir="/tmp/mnist_convnet_model")

    5,Set Up a Logging Hook

    # Set up logging for predictions
    tensors_to_log = {"probabilities": "softmax_tensor"}

    logging_hook = tf.train.LoggingTensorHook(
    tensors=tensors_to_log, every_n_iter=50)

    6,输入数据,开始训练

    # Train the model
    train_input_fn = tf.estimator.inputs.numpy_input_fn(
    x={"x": train_data},
    y=train_labels,
    batch_size=100,
    num_epochs=None,
    shuffle=True)

    # train one step and display the probabilties
    mnist_classifier.train(
    input_fn=train_input_fn,
    steps=1,
    hooks=[logging_hook])

    mnist_classifier.train(input_fn=train_input_fn, steps=1000)

    7,路径

    train_input_fn-》mnist_classifier-》cnn_model_fn,然后input_fn与input_layer对接?

    8,评估

    eval_input_fn = tf.estimator.inputs.numpy_input_fn(
    x={"x": eval_data},
    y=eval_labels,
    num_epochs=1,
    shuffle=False)

    eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
    print(eval_results)

  • 相关阅读:
    BZOJ 3189. [Coci2011]Slika
    BZOJ3188. [Coci 2011]Upit
    P4304 [TJOI2013]攻击装置
    P3966 [TJOI2013]单词
    P3964 [TJOI2013]松鼠聚会
    BZOJ 3157: 国王奇遇记
    设计模式--策略模式
    SSM整合步骤
    Mybatis笔记二
    Java调用WebService之Axis实现
  • 原文地址:https://www.cnblogs.com/augustone/p/10507699.html
Copyright © 2011-2022 走看看