zoukankan      html  css  js  c++  java
  • About Invertible Matrices Jun

    Question: Let $X $ be a Banach space and let $T $ and ${T^{ - 1}}$ belong to ${\cal B}\left( X \right)$. Prove that if $S \in {\cal B}\left( X \right)$ and $\left\| {S - T} \right\| < \frac{1}{{\left\| {{T^{ - 1}}} \right\|}}$, then $S^{ -1 } $ exists. (FOUNDATIONS OF MODERN ANALYSIS, Avner Friedman)

    Here is a proof for matrix version. As we want to prove that $S$ is invertible, we are equivalently trying to prove $N\left( S \right) = \left\{ 0 \right\}$. The conditons we have can induce that

    \[\begin{array}{l}
    {\rm{    }}\left\| {S - T} \right\| < \frac{1}{{\left\| {{T^{ - 1}}} \right\|}}\\
     \Rightarrow \left\| {{T^{ - 1}}} \right\|\left\| {S - T} \right\| < 1
     \Rightarrow \left\| {{T^{ - 1}}\left( {S - T} \right)} \right\| < 1\\
     \Rightarrow \left\| {{T^{ - 1}}S - I} \right\| < 1\\
     \Rightarrow 1 - \left\| {{T^{ - 1}}S} \right\| < 1
     \Rightarrow 0 < \left\| {{T^{ - 1}}S} \right\|
    \end{array}\]

    Actually, this may not help too much. We shall prove that $\forall x \ne 0,Sx \ne {\rm{0}}$, or equivalently, $\forall \left\| x \right\| \ne {\rm{0}},Sx \ne {\rm{0}}$. We then next try to do this:

    \[\begin{array}{l}
    \left\| x \right\| = \left\| {\left( {I - {T^{ - 1}}S + {T^{ - 1}}S} \right)x} \right\|
     = \left\| {\left( {I - {T^{ - 1}}S} \right)x + \left( {{T^{ - 1}}S} \right)x} \right\|\\
     \le \left\| {\left( {I - {T^{ - 1}}S} \right)x} \right\| + \left\| {\left( {{T^{ - 1}}S} \right)x} \right\|
     \le \left\| {I - {T^{ - 1}}S} \right\|\left\| x \right\| + \left\| {\left( {{T^{ - 1}}S} \right)x} \right\|
    \end{array}\]

    Obviously, we can conclude that $0 < \left\| {\left( {{T^{ - 1}}S} \right)x} \right\|$ which is exactly what we want (since $\left\| {{T^{ - 1}}} \right\| > 0 $, $0 < \left\| {\left( {{T^{ - 1}}S} \right)x} \right\| < \left\| {{T^{ - 1}}} \right\|\left\| {Sx} \right\| \Rightarrow \left\| {Sx} \right\| > 0 \Rightarrow Sx \ne 0$).

    Note: This theorem tells us that the lower bound (actually the greatest low bound, D.Lee & P.Y.Wu) of the distance between $T$ and the nearest sigular matrices. Once a matrix with the distance $\left\| {T - S} \right\|$ strictly lower than $\frac{1}{{\left\| {{T^{ - 1}}} \right\|}}$, it's then invertible.

    Example: ${\left( {I - A} \right)^{ - 1}} = \sum\limits_{i = 0}^\infty  {{A^i}} $ if $\left\| A \right\| < 1$. The condition is just to make sure that whether ${I - A}$ is invertible or not, comparing to the identity matrix $I$. That is, by the theorem above, if $\left\| {\left( {I - A} \right) - I} \right\| < \frac{1}{{\left\| {{I^{ - 1}}} \right\|}} = 1$ or $\left\| A \right\| < 1$, then the matrix ${I - A}$ is invertible and the expansion is meaningful.

  • 相关阅读:
    366. Find Leaves of Binary Tree输出层数相同的叶子节点
    716. Max Stack实现一个最大stack
    515. Find Largest Value in Each Tree Row查找一行中的最大值
    364. Nested List Weight Sum II 大小反向的括号加权求和
    156. Binary Tree Upside Down反转二叉树
    698. Partition to K Equal Sum Subsets 数组分成和相同的k组
    244. Shortest Word Distance II 实现数组中的最短距离单词
    187. Repeated DNA Sequences重复的DNA子串序列
    java之hibernate之基于主键的双向一对一关联映射
    java之hibernate之基于主键的单向一对一关联映射
  • 原文地址:https://www.cnblogs.com/aujun/p/3802661.html
Copyright © 2011-2022 走看看