zoukankan      html  css  js  c++  java
  • 证明一个递归数列极限的存在 Jun

    If ${x_{n + 1}} = \cos {x_n}$, prove that $\mathop {\lim }\limits_{n \to \infty } {x_n}$ exists.

    Note 1: As we want to prove that a limit of a sequence exists, some methods can be used.

    1. $\left\{ {{x_n}} \right\}$ is bounded and monotonic, then $\left\{ {{x_n}} \right\}$converges.
    2. $\left\{ {{x_n}} \right\}$ converges if and only if $\left\{ {{x_{2n}}} \right\}$ and $\left\{ {{x_{2n+1}}} \right\}$ both converge to the same limit.
    3. In any metric space $X$, every convergent sequence is a Cauchy sequence. And every Cauchy sequence converges in a complete metric space.

    Definiton of Cauchy sequence: A sequence ${x_n}$ in a metic space $X$ is said to be a Cauchy squence if \[\forall \varepsilon  > 0,\exists N > 0{\rm{ s}}{\rm{.t}}{\rm{. }}\forall n,m > N \Rightarrow \left| {{x_m} - {x_n}} \right| < \varepsilon. \]

    It's obvious that in Cauchy sequence, $x_n$'s are very closed to each other whereas $n$ is sufficiently large.

    Since the sinusoid is bounded by 1, we only need to consider $\left| {{x_0}} \right| \le 1$. Otherwise, we will omit ${{x_0}}$ and it does nothing to the convergence of this sequence.

    Proof 1: We are easy to check that whatever ${{x_0}}$ is, $\left\{ {{x_{2n}}} \right\}$ and $\left\{ {{x_{2n+1}}} \right\}$ both are monotonic with different monotonicity. Thus they both converges to some nonnegative numbers, say $a$ and $b$, respectively. However, from the iterative equation ${x_{2n}} = \cos \left( {\cos {x_{2n - 2}}} \right)$ we get that $a = \cos \left( {\cos a} \right)$. Similarly, $b = \cos \left( {\cos b} \right)$. If $a = b$, we complete the proof by method 2 in the Note 1 above.

    Now let $f\left( x \right) = \cos \left( {\cos x} \right) - x$, $x \in \left[ { - 1,1} \right]$. Differentiating $f\left( x \right)$ we can easily conclude that $f\left( x \right)$ is monotone-decreasing. Since $f\left( { - 1} \right) > 0$, $f\left( { 1} \right) < 0$ and $f\left( x \right)$ is continuous on a closed interval, by the Intermediate Value Theorem of continuous function, the equation $f\left( x \right) = 0$ has a unique solution. Thus $a = b$. Q.E.D.

    Proof 2: Now we will use the Cauchy criterion to prove this proposition. Let $m > n$, then \[\begin{array}{l}
    \left| {{x_m} - {x_n}} \right| = \left| {\cos {x_{m - 1}} - \cos {x_{n - 1}}} \right|\\
     = 2\left| {\sin \frac{{{x_{m - 1}} + {x_{n - 1}}}}{2}\sin \frac{{{x_{m - 1}} - {x_{n - 1}}}}{2}} \right|\mathop  \le \limits^{{\rm{(a)}}} 2\left( {\sin 1} \right)\left| {\sin \frac{{{x_{m - 1}} - {x_{n - 1}}}}{2}} \right|\\
     \le \left( {\sin 1} \right)\left| {{x_{m - 1}} - {x_{n - 1}}} \right| \le {\left( {\sin 1} \right)^n}\left| {{x_{m - n}} - {x_0}} \right| \le {\left( {\sin 1} \right)^n}\left( {1 + \left| {{x_0}} \right|} \right).
    \end{array}\]

    Where inequality (a) follows form the fact that $\left| {{x_n}} \right| < 1,\forall n \Rightarrow \left| {\sin \frac{{{x_{m - 1}} + {x_{n - 1}}}}{2}} \right| < \sin 1$.

    Since $\sin 1 < 1$ strictly, $\forall \varepsilon  > 0$, $\exists N > 0$ s.t. $\forall n > N \Rightarrow {\left( {\sin 1} \right)^n} < \frac{\varepsilon }{{1 + \left| {{x_0}} \right|}}$. Thus $\forall n,m > N \Rightarrow \left| {{x_m} - {x_n}} \right| < \varepsilon $. We have prove that $\left\{ {{x_n}} \right\}$ is a Cauchy sequence, it then convergs. Q.E.D.

    Note 2: As in proof 2, we recognize that $f(x)= \cos {x}$ is a contraction since $\left| {\cos x - \cos y} \right| < \theta \left| {x - y} \right|$ where $\theta  = \sin 1 < 1$. The following contraction principle tells us that there exist one and only one $x$ such that $\cos x = x$.

    Theorem (Contraction Principle): If $X$ is a complete metric space, and if $\varphi $ is a contraction of $X$ into $X$, then  there exist one and only one $x \in X$ such that $\varphi \left( x \right) = x$. (cf: Principles of Mathematical Analysis Rudin, Page220)

  • 相关阅读:
    EntityFramework 启用迁移 EnableMigrations 报异常 "No context type was found in the assembly"
    JAVA 访问FTP服务器示例(2)
    NuGet Package Manager 更新错误解决办法
    JAVA 访问FTP服务器示例(1)
    RemoteAttribute 的使用问题
    诡异的 javascript 变量
    javascript apply用法
    Babun 中文乱码
    GSM呼叫过程
    转站博客园
  • 原文地址:https://www.cnblogs.com/aujun/p/3871244.html
Copyright © 2011-2022 走看看