[sum_{i=1}^ni^k
]
-
递推
令其为(f(n,k))
[(i+1)^{k+1}-i^{k+1}=C_{k+1}^1i^k+C_{k+1}^2i^{k-1}+…+C_{k+1}^ki+1 ]相加得
[(n+1)^{k+1}-1=C_{k+1}^1sum_{i=0}^ni^k+C_{k+1}^2sum_{i=0}^ni^{k-1}+…+C_{k+1}^ksum_{i=0}^ni+n ][f(n,k)=frac1{k+1}((n+1)^{k+1}-sum_{i=2}^{k+1}C_{k+1}^if(n,k+1-i)-1) ]时间复杂度(O(k^2))
-
拉格朗日插值
明显是一个关于n的k+1次多项式,可以做到(O(k))
-
斯特林数(见组合数学)
-
伯努利数
[f(n,k)=frac1{k+1}sum_{i=1}^{k+1}C_{k+1}^iB_{k+1-i}(n+1)^i ](B_0=1),对于(n>0)有
[sum_{i=0}^nC_{n+1}^iB_i=0 ] -
多项式差分
(g(n)=n^k)这一函数的差分表的第0条对角线为(c_0…c_k)
[sum_{i=0}^nf(i)=sum_{i=0}^nsum_{j=0}^kc_jC_i^j ][=sum_{j=0}^ksum_{i=0}^nc_jC_i^j ][=sum_{j=0}^kc_jC_{n+1}^{j+1} ]