zoukankan      html  css  js  c++  java
  • CH#46A 磁力块

    题意

    描述

    在一片广袤无垠的原野上,散落着N块磁石。每个磁石的性质可以用一个五元组(x,y,m,p,r)描述,其中x,y表示其坐标,m是磁石的质量,p是磁力,r是吸引半径。若磁石A与磁石B的距离不大于磁石A的吸引半径,并且磁石B的质量不大于磁石A的磁力,那么A可以吸引B。
    小取酒带着一块自己的磁石L来到了这篇原野的(x0,y0)处,我们可以视为磁石L的坐标为(x0,y0)。小取酒手持磁石L并保持原地不动,所有可以被L吸引的磁石将会被吸引过来。在每个时刻,他可以选择更换任意一块自己已经获得的磁石(当然也可以是自己最初携带的L磁石)在(x0,y0)处吸引更多的磁石。小取酒想知道,他最多能获得多少块磁石呢?

    输入格式

    第一行五个整数x0,y0,pL,rL,N,表示小取酒所在的位置,磁石L磁力、吸引半径和原野上散落磁石的个数。
    接下来N行每行五个整数x,y,m,p,r,描述一块磁石的性质。

    输出格式

    输出一个整数,表示最多可以获得的散落磁石个数(不包含最初携带的磁石L)。

    样例输入

    0 0 5 10 5
    5 4 7 11 5
    -7 1 4 7 8
    0 2 13 5 6
    2 -3 9 3 4
    13 5 1 9 9
    

    样例输出

    3

    数据范围与约定

    • 对于30%的数据,1<=N<=1000。
    • 对于100%的数据,1<=N<=250000,-10^9<=x,y<=10^9,1<=m,p,r<=10^9。
            </article>
    

    分析

    容易想到BFS框架,需要判断哪些磁石能被吸引。能被吸引的条件是 质量≤磁力 且 距离≤吸引半径。考虑分块。

    磁石按照质量排序后分成sqrt(N)块,每块内部按照距离排序。然后用每块获得的磁石去尝试吸引其它磁石。那么一定存在一个k,使得[1,k-1]块中的磁石质量都不大于该磁石的吸引力。相当于在前k-1块的开头取出若干磁石(均摊O(1)),在第k块中暴力扫描哪些磁石可以被取出(O(sqrt(N))),总复杂度(O(N sqrt{N}))。这是最好写的做法。

    代码

    #include<bits/stdc++.h>
    #define rg register
    #define il inline
    #define co const
    template<class T>il T read(){
        rg T data=0,w=1;rg char ch=getchar();
        while(!isdigit(ch)) {if(ch=='-') w=-1;ch=getchar();}
        while(isdigit(ch)) data=data*10+ch-'0',ch=getchar();
        return data*w;
    }
    template<class T>il T read(rg T&x) {return x=read<T>();}
    typedef long long ll;
    using namespace std;
    
    co int N=2.5e5+1;
    struct P{
    	int x,y,m,p,r;
    }p[N],q[N];
    bool b[N];
    int n,L[N],R[N],M[N];
    bool cmp(co P&a,co P&b){
    	return a.m<b.m;
    }
    bool cmp0(co P&a,co P&b){
    	return (ll)(a.x-q[0].x)*(a.x-q[0].x)+(ll)(a.y-q[0].y)*(a.y-q[0].y)<(ll)(b.x-q[0].x)*(b.x-q[0].x)+(ll)(b.y-q[0].y)*(b.y-q[0].y);
    }
    bool pd(co P&a,co P&b){
    	return (ll)(q[0].x-b.x)*(q[0].x-b.x)+(ll)(q[0].y-b.y)*(q[0].y-b.y)<=(ll)a.r*a.r;
    }
    int main(){
    //	freopen(".in","r",stdin),freopen(".out","w",stdout);
    	read(q[0].x),read(q[0].y),read(q[0].p),read(q[0].r),read(n);
    	for(int i=1;i<=n;++i) read(p[i].x),read(p[i].y),read(p[i].m),read(p[i].p),read(p[i].r);
    	sort(p+1,p+n+1,cmp);
    	int t=sqrt(n);
    	for(int i=1;i<=t;++i){
    		L[i]=(i-1)*t+1,R[i]=i*t,M[i]=p[R[i]].m;
    		sort(p+L[i],p+R[i]+1,cmp0);
    	}
    	if(R[t]<n){
    		L[t+1]=R[t]+1,R[++t]=n,M[t]=p[R[t]].m;
    		sort(p+L[t],p+R[t]+1,cmp0);
    	}
    	int l=0,r=1; // [l,r)
    	while(l<r){
    		int k=0;
    		for(int i=1;i<=t;++i){
    			if(M[i]<=q[l].p) k=i;
    			else break;
    		}
    		for(int i=1;i<=k;++i)
    			while(L[i]<=R[i]&&pd(q[l],p[L[i]])){
    				if(!b[L[i]]) b[L[i]]=1,q[r++]=p[L[i]];
    				++L[i];
    			}
    		if(k++!=t)for(int i=L[k];i<=R[k];++i)
    			if(!b[i]&&p[i].m<=q[l].p&&pd(q[l],p[i]))
    				b[i]=1,q[r++]=p[i];
    		++l;
    	}
    	printf("%d
    ",r-1);
    	return 0;
    }
    
  • 相关阅读:
    iOS 获取系统通知开关状态[隐式推送]
    iOS collectionView自适应高度estimatedItemSize
    iOS 审核被拒:2.1 App Tracking Transparency permission request
    大小端
    注解@Mapper(componentModel = "spring")自动生成DTODO的模型映射
    Nexus3_windows部署及Nuget上传
    Winform_打包_CEF
    Nexus3_windows部署及NPM上传
    生成url的二维码图片
    微信小程序实现图片是上传、预览功能
  • 原文地址:https://www.cnblogs.com/autoint/p/10614178.html
Copyright © 2011-2022 走看看