zoukankan      html  css  js  c++  java
  • CF24D Broken robot

    题意

    D. Broken robot
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You received as a gift a very clever robot walking on a rectangular board. Unfortunately, you understood that it is broken and behaves rather strangely (randomly). The board consists of N rows and M columns of cells. The robot is initially at some cell on the i-th row and the j-th column. Then at every step the robot could go to some another cell. The aim is to go to the bottommost (N-th) row. The robot can stay at it's current cell, move to the left, move to the right, or move to the cell below the current. If the robot is in the leftmost column it cannot move to the left, and if it is in the rightmost column it cannot move to the right. At every step all possible moves are equally probable. Return the expected number of step to reach the bottommost row.

    Input

    On the first line you will be given two space separated integers N and M (1 ≤ N, M ≤ 1000). On the second line you will be given another two space separated integers i and j (1 ≤ i ≤ N, 1 ≤ j ≤ M) — the number of the initial row and the number of the initial column. Note that, (1, 1) is the upper left corner of the board and (N, M) is the bottom right corner.

    Output

    Output the expected number of steps on a line of itself with at least 4 digits after the decimal point.

    Examples
    Input
    Copy
    10 10
    10 4
    Output
    Copy
    0.0000000000
    Input
    Copy
    10 14
    5 14
    Output
    Copy
    18.0038068653

    分析

    参照M_sea的博客。

    (f[i][j])表示((i,j))到最后一排的移动步数的期望。

    容易得出:

    (f[i][1]=frac{1}{3}(f[i][1]+f[i][2]+f[i-1][1])+1)

    (f[i][m]=frac{1}{3}(f[i][m]+f[i][m-1]+f[i-1][m])+1)

    (f[i][j]=frac{1}{4}(f[i][j]+f[i][j-1]+f[i][j+1]+f[i-1][j]quad (1<j<m))

    发现列与列的转移是有后效性的。

    所以用有后效性DP的基本方法——DP套高斯消元。

    但是发现系数矩阵中每行只有几个数要消,而且非常有规律。所以可以(O(m))解。

    细节见代码。注意要特判(m=1)的情况。

    代码

    第一次打特殊的高斯消元……学到了呀。

    #include<bits/stdc++.h>
    #define rg register
    #define il inline
    #define co const
    template<class T>il T read(){
        rg T data=0,w=1;rg char ch=getchar();
        while(!isdigit(ch)) {if(ch=='-') w=-1;ch=getchar();}
        while(isdigit(ch)) data=data*10+ch-'0',ch=getchar();
        return data*w;
    }
    template<class T>il T read(rg T&x) {return x=read<T>();}
    typedef long long ll;
    
    co int N=1002;
    int n,m,x,y;
    double f[N][N],d[N][N];
    void work(){
    	for(int i=1;i<=m;++i){
    		double w=1/d[i][i];
    		d[i][i]*=w,
    		d[i][m+1]*=w;
    		if(i==m) break;
    		d[i][i+1]*=w;
    		w=d[i+1][i]/d[i][i];
    		d[i+1][i]-=w*d[i][i],
    		d[i+1][i+1]-=w*d[i][i+1],
    		d[i+1][m+1]-=w*d[i][m+1];
    	}
    	for(int i=m-1;i;--i)
    		d[i][m+1]-=d[i+1][m+1]*d[i][i+1];
    }
    int main(){
    //	freopen(".in","r",stdin),freopen(".out","w",stdout);
    	read(n),read(m),read(x),read(y);
    	for(int i=n-1;i>=x;--i){
    		d[1][1]=d[m][m]=-2/3.0,
    		d[1][2]=d[m][m-1]=1/3.0;
    		for(int j=2;j<m;++j)
    			d[j][m+1]=-f[i+1][j]/4.0-1,
    			d[j][j]=-3/4.0,
    			d[j][j-1]=d[j][j+1]=1/4.0;
    		if(m==1) d[1][1]=-1/2.0;
    		d[1][m+1]=-f[i+1][1]/3.0-1;
    		d[m][m+1]=-f[i+1][m]/3.0-1;
    		if(m==1) d[m][m+1]=-f[i+1][m]/2.0-1;
    		work();
    		for(int j=1;j<=m;++j) f[i][j]=d[j][m+1];
    	}
    	printf("%lf
    ",f[x][y]);
    	return 0;
    }
    
  • 相关阅读:
    高危预警|RDP漏洞或引发大规模蠕虫爆发,用户可用阿里云免费检测服务自检,建议尽快修复
    高危预警| SQL数据库成主要攻击对象,或引发新一轮大规模勒索
    dp练习(7)—— 最小和
    dp练习(6)——搬运礼物
    dp练习(5)——最长严格上升子序列
    dp练习(4)——过河卒
    dp练习(3)——棋盘问题
    dp练习(2)——老鼠的旅行
    dp练习(1)——马走日字
    埃氏筛法——标记质数
  • 原文地址:https://www.cnblogs.com/autoint/p/10667284.html
Copyright © 2011-2022 走看看