题意
There is a tree with (N) vertices numbered (1) through (N). The (i)-th of the (N−1) edges connects vertices (a_i) and (b_i).
Initially, each edge is painted blue. Takahashi will convert this blue tree into a red tree, by performing the following operation (N−1) times:
- Select a simple path that consists of only blue edges, and remove one of those edges.
- Then, span a new red edge between the two endpoints of the selected path.
His objective is to obtain a tree that has a red edge connecting vertices (c_i) and (d_i), for each (i).
Determine whether this is achievable.
分析
这题可以倒着想,在原图中最后删掉的边,在新图中也一定是以同样的方式出现。
那么我们可以看成一开始原图中有n个点连通块,每次找一条在原图和新图中都出现的边,把这条边的两个端点缩成一个点,然后继续进行以上操作。
若还未合并至一点且无法继续合并则不可行。
用并查集维护连通块,map维护边出现的次数,set维护点的邻接点,用queue维护当前可合并的点对。合并时需要找到第一个不在同一连通块中的可合并点对(因为以前的合并可能让它们属于同一连通块),find一下合并连通块的并查集的根,然后用启发式合并把x的邻接点赋给y,删掉x的一切记录(省空间),最后把出现次数改变成2的边放入queue中。
代码
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<ctime>
#include<iostream>
#include<string>
#include<vector>
#include<list>
#include<deque>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<algorithm>
#include<complex>
#pragma GCC optimize ("O0")
using namespace std;
template<class T> inline T read(T&x){
T data=0;
int w=1;
char ch=getchar();
while(!isdigit(ch))
{
if(ch=='-')
w=-1;
ch=getchar();
}
while(isdigit(ch))
data=10*data+ch-'0',ch=getchar();
return x=data*w;
}
typedef long long ll;
typedef pair<int,int>pii;
const int MAXN=1e5+7;
int n;
map<ll,int>M;
queue<pii>Q;
set<int>l[MAXN];
int fa[MAXN];
int find(int x)
{
return fa[x]==x?x:fa[x]=find(fa[x]);
}
ll getid(int x,int y)
{
if(x>y)
swap(x,y);
return (ll)x*n+y;
}
void link(int x,int y)
{
l[x].insert(y);
l[y].insert(x);
ll v=getid(x,y);
++M[v];
if(M[v]==2)
Q.push(pii(x,y));
}
int main()
{
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
read(n);
for(int i=1;i<=n;++i)
fa[i]=i;
for(int i=1;i<=2*n-2;++i)
{
int x,y;
read(x);read(y);
link(x,y);
}
for(int i=1;i<n;++i)
{
int x,y;
while(1)
{
if(Q.empty())
{
printf("NO
");
return 0;
}
x=Q.front().first,y=Q.front().second;
Q.pop();
x=find(x),y=find(y);
if(x!=y)
break;
}
if(l[x].size()>l[y].size())
swap(x,y);
fa[x]=y;
M.erase(getid(x,y));
l[y].erase(x);
for(auto v:l[x])
{
v=find(v);
if(v==y)
continue;
M.erase(getid(x,v));
l[v].erase(x);
l[x].erase(v);
link(v,y);
}
}
printf("YES
");
// fclose(stdin);
// fclose(stdout);
return 0;
}