zoukankan      html  css  js  c++  java
  • 【动态规划】Gym

    Hasan and Bahosain want to buy a new video game, they want to share the expenses. Hasan has a set of N coins and Bahosain has a set of M coins. The video game costs W JDs. Find the number of ways in which they can pay exactly W JDs such that the difference between what each of them payed doesn’t exceed K.

    In other words, find the number of ways in which Hasan can choose a subset of sum S1and Bahosain can choose a subset of sum S2 such that S1 + S2 = W and |S1 - S2| ≤ K.

    Input

    The first line of input contains a single integer T, the number of test cases.

    The first line of each test case contains four integers NMK and W (1 ≤ N, M ≤ 150) (0 ≤ K ≤ W(1 ≤ W ≤ 15000), the number of coins Hasan has, the number of coins Bahosain has, the maximum difference between what each of them will pay, and the cost of the video game, respectively.

    The second line contains N space-separated integers, each integer represents the value of one of Hasan’s coins.

    The third line contains M space-separated integers, representing the values of Bahosain’s coins.

    The values of the coins are between 1 and 100 (inclusive).

    Output

    For each test case, print the number of ways modulo 109 + 7 on a single line.

    Example

    Input
    2
    4 3 5 18
    2 3 4 1
    10 5 5
    2 1 20 20
    10 30
    50
    Output
    2
    0

    对A和B的硬币分别dp,f[i]表示拼成i元的方案数,for i=1 to n for j=15000 down to 0 f(j+a(i))+=f(j)

    最后枚举一下差在K以内,且i+j=W的f(i)和g(j)即可。

    #include<cstdio>
    #include<algorithm>
    #include<iostream>
    #include<cstring>
    using namespace std;
    typedef long long ll;
    #define MOD 1000000007ll
    int T,n,m,K,W;
    int a[160],b[160];
    int Abs(int x)
    {
    	return x<0 ? (-x) : x;
    }
    ll f[15010],g[15010];
    int main()
    {
    	scanf("%d",&T);
    	for(;T;--T)
    	  {
    	  	scanf("%d%d%d%d",&n,&m,&K,&W);
    		for(int i=1;i<=n;++i)
    	  	  scanf("%d",&a[i]);
    		for(int i=1;i<=m;++i)
    	  	  scanf("%d",&b[i]);
    	  	memset(f,0,sizeof(f));
    	  	memset(g,0,sizeof(g));
    	  	f[0]=1;
    	  	for(int i=1;i<=n;++i)
    	  	  for(int j=15000;j>=0;--j)
    	  	    if(a[i]+j<=15000)
    	  	      f[j+a[i]]=(f[j+a[i]]+f[j])%MOD;
    	  	g[0]=1;
    	  	for(int i=1;i<=m;++i)
    	  	  for(int j=15000;j>=0;--j)
    	  	    if(b[i]+j<=15000)
    	  	      g[j+b[i]]=(g[j+b[i]]+g[j])%MOD;
    	  	ll ans=0;
    	  	for(int i=0;i<=W;++i)
    	  	  if(Abs(W-i-i)<=K)
    	  	    ans=(ans+f[i]*g[W-i]%MOD)%MOD;
    	  	cout<<ans<<endl;
    	  }
    	return 0;
    }
  • 相关阅读:
    Thread类常用方法
    sql 语句NVL()用法
    SQL极限函数limit()详解<分页必备>
    查询用户上次登录时间问题
    ROWNUM-Oracle中的分页代码
    分组统计查询
    Oracle中的多表查询
    Oracle中的单行函数
    JDBC中的事务-Transaction
    MySql中增加一列
  • 原文地址:https://www.cnblogs.com/autsky-jadek/p/6287950.html
Copyright © 2011-2022 走看看