zoukankan      html  css  js  c++  java
  • leetcode--Largest Rectangle in Histogram

    Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.

    Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].

    The largest rectangle is shown in the shaded area, which has area = 10 unit.

    For example,
    Given height = [2,1,5,6,2,3],
    return 10.

    Have you been asked this question in an interview? 

    method 1: 

    public class Solution {
       /**
    	 * The algorithm in this problem is similar the one in problem of trapping rain water problem.
    	 * We use two stacks to save some indices of the starting position and ending position of elements.<br>
    	 * The running time of this algorithm is O(n).
    	 * @param height -int array which denotes the heights
    	 * @return int -maximum rectangle area
    	 * @author Averill Zheng
    	 * @version 2014-06-22
    	 * @since JDK 1.7
    	 */
    	public int largestRectangleArea(int[] height) {
    		int max = 0, length = height.length;
    	    Stack<Integer> indices = new Stack<Integer>(); 
    	    Stack<Integer> leftEnd = new Stack<Integer>();
    	    indices.push(0);
    	    leftEnd.push(0);
    	    if(length > 0){
    	    	max = height[0];
    	        for(int i = 1; i < length; ++i){
    	        	if(height[indices.peek()] <= height[i]) {
    	        		max = Math.max(max, height[i]);
    	        		leftEnd.push(i);
    	        		indices.push(i);
    	        	}
    	        	else {
    	        		int left = 0, start = indices.peek();
    	        		while(!indices.empty() && height[indices.peek()] >= height[i]){
    	        			left = leftEnd.pop();
    	        			max = Math.max(max, height[indices.pop()] * (start - left + 1));
    	        		}
    	        		leftEnd.push(left);
    	        		indices.push(i);
    	        	}
    	       	}
    	        while(!indices.empty()){
    	        	max = Math.max(max, height[indices.pop()] * (length - leftEnd.pop()));
    	        }
    	    }
    	    return max;
        }
    }
    

    method 2: The algorithm to this problem is a little bit trick. 

    The running time of this algorithm is O(n) where n is the length of height.

    1. scan the height, if the array is not increasing, then remove the previous bigger elements.(in this step, we need to compare the area with the current maximum area)

    2. after the step 1, then the remaining elements of the array is increasing. then calculate the maximum.

    public class Solution {
        public int largestRectangleArea(int[] height) {
            int area = 0;
            int len = height.length, curr = 0;
            Stack<Integer> left = new Stack<Integer>();
            Stack<Integer> index = new Stack<Integer>();
            while(curr < len){
                if(curr == 0 || height[curr] >= height[index.peek()]){
                    left.push(curr);
                    index.push(curr);
                }
                else if(height[curr] < height[index.peek()]){
                        int last;
                        //in this following while loop, it means that we remove the
                        //elements which is greater then height[curr].
                        do{
                            last = left.pop();
                            area = Math.max(area, height[index.pop()] *(curr - last));
                        }while(!left.isEmpty() && height[curr] < height[index.peek()]);
                        
                        //we need to record the position of height[curr] when we removed the 
                        //previous larger elements
                        left.push(last);
                        //we also need to record the value of the height[curr]
                        index.push(curr);
                    }
                    curr++;
                }
                while(!index.isEmpty() && !left.isEmpty())
                    area = Math.max(area, height[index.pop()] * (len - left.pop()));
                
            return area;
        }
    }
    

      

  • 相关阅读:
    ExtJs 第二章,Ext.form.Basic表单操作
    linux centos 下php的mcrypt扩展
    curl_errno错误码说明
    centos 安装composer
    虚拟机centOs Linux与Windows之间的文件传输
    CentOS 6.4 linux下编译安装 LNMP环境
    CentOS 6.4 php-fpm 添加service 添加平滑启动/重启
    CentOS 6.4 linux下编译安装MySQL5.6.14
    centOS linux 下PHP编译安装详解
    centOS linux 下nginx编译安装详解
  • 原文地址:https://www.cnblogs.com/averillzheng/p/3610493.html
Copyright © 2011-2022 走看看