Given two words (start and end), and a dictionary, find the length of shortest transformation sequence from start to end, such that:
- Only one letter can be changed at a time
- Each intermediate word must exist in the dictionary
For example,
Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog",
return its length 5.
Note:
- Return 0 if there is no such transformation sequence.
- All words have the same length.
- All words contain only lowercase alphabetic characters
public class Solution {
/**
* This is a typical bfs problem.
* @param start
* @param end
* @param dict
* @return
*/
public int ladderLength(String start, String end, Set<String> dict) {
if(dict.size() == 0) return 0;
if(start.equals(end)) return 1;
Queue<String> iteratedQueue = new LinkedList<String>();
Queue<Integer> depth = new LinkedList<Integer>();
iteratedQueue.add(start);
depth.add(1);
while(iteratedQueue.peek() != null) {
String currentWord = iteratedQueue.poll();
int currentDepth = depth.poll();
for(int i = 0; i < currentWord.length(); ++i){
char[] carray = currentWord.toCharArray();
for(char c = 'a'; c <= 'z'; ++c){
carray[i] = c;
String possibleWord = new String(carray);
if(possibleWord.equals(end))
return currentDepth + 1;
if(dict.contains(possibleWord)) {
iteratedQueue.add(possibleWord);
depth.add(currentDepth + 1);
dict.remove(possibleWord);
}
}
}
}
return 0;
}
}