- 两个n维数组,已排序,为升序。设计算法求2n的数中第n大的数。要求分析时间和空间复杂度。
比较两个有序表各自的中位数 a,b 假设 a>=b,那么这2n个数的中位数一定不在第一个序列>a的那部分上,因为第一个序列中有n/2-1个数比a小,第二个序列中至少有n/2个 数比a小(a>=b),同理,中位数一定不在第二个序列<b的那部分。这样每个序列中各排除了n/2, 于是变为了n/2的两个有序序列中求中位数。当序列长度为一时,较小数即为所求中位数。
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define N 5
#define MAX(a,b) (a)>(b)?(a):(b)
void print_arrat(int A[], int n)
{
int i;
for(i=0;i<n;i++)
printf("%d\t",A[i]);
printf("\n");
}
void swap(int* a, int* b)
{
int tmp = *a;
*a = *b;
*b = tmp;
}
int partition(int A[], int start, int end)
{
int x = A[end];
int i = start-1;
int j = start;
for(;j<end;j++)
{
if(A[j]<x)
{
i++;
swap(A+i, A+j);
}
}
swap(A+i+1, A+end);
return i+1;
}
void quick_sort(int A[], int start, int end)
{
if(start<end)
{
int q = partition(A, start, end);
quick_sort(A, start, q-1);
quick_sort(A, q+1, end);
}
}
int count_mid_n(int A[],int a_start,int a_end,int B[],int b_start,int b_end)
{
int ret = 0;
if((a_start==a_end)||(b_start==b_end))
{
printf("min %d %d\n", A[a_start], B[b_start]);
ret = MAX(A[a_start], B[b_start]);
printf("ret is %d\n", ret);
return ret;
}
else
{
int a_mid = (a_start+a_end)/2;
int b_mid = (b_start+b_end)/2;
printf("a_mid is %d, b_mid is %d\n", A[a_mid], B[b_mid]);
if(A[a_mid]>B[b_mid])
return count_mid_n(A, a_start,a_mid,B,b_mid,b_end);
else if(A[a_mid]<B[b_mid])
return count_mid_n(A, a_mid,a_end,B,b_start,b_mid);
else
{
ret = A[a_mid];
return ret;
}
}
}
int main(int argc, char *argv[])
{
int i;
int ret;
srand((unsigned int)time(NULL));
int A[N];
int B[N];
for(i=0;i<N;i++)
A[i] = rand()%100;
for(i=0;i<N;i++)
B[i] = rand()%100;
quick_sort(A, 0, N-1);
quick_sort(B, 0, N-1);
printf("array A is:\n");
print_arrat(A,N);
printf("array B is:\n");
print_arrat(B,N);
ret = count_mid_n(A,0,N-1,B,0,N-1);
printf("mid of 2n is: %d\n", ret);
system("PAUSE");
return 0;
}