zoukankan      html  css  js  c++  java
  • (周日赛)Non-square Equation

    题意:给n 求最小的x

    题解:二元一次方程求解,x*x+x*b-n=0 遍历b

    Description
    Let's consider equation:

    x^2 + s(x)·x - n = 0, 
    where x, n are positive integers, s(x) is the function, equal to the sum of digits of number x in the decimal number system.

    You are given an integer n, find the smallest positive integer root of equation x, or else determine that there are no such roots.

    Input
    A single line contains integer n(1 ≤ n ≤ 1018) — the equation parameter.

    Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier.

    Output
    Print -1, if the equation doesn't have integer positive roots. Otherwise print such smallest integer x(x > 0), that the equation given in the statement holds.

    Sample Input
    Input
    2
    Output
    1


    Input
    110
    Output
    10


    Input
    4
    Output
    -1


    Hint
    In the first test case x = 1 is the minimum root. As s(1) = 1 and 12 + 1·1 - 2 = 0.

    In the second test case x = 10 is the minimum root. As s(10) = 1 + 0 = 1 and 102 + 1·10 - 110 = 0.

    In the third test case the equation has no roots.

     1 #include<stdio.h>
     2 #include<math.h>
     3 
     4 __int64 find(__int64 x)
     5 {
     6     __int64 b=0;
     7     while(x)
     8     {
     9         b+=x%10;
    10         x=x/10;
    11     }
    12     return b;
    13 }
    14 
    15 int main()
    16 {
    17     __int64 n,i,d,x;
    18     while(~scanf("%I64d",&n))
    19     {
    20         __int64 ans=-1;
    21         for(i=1;i<=100;i++)
    22         {
    23             d=sqrt((double)(i*i+4*n));
    24             x=d-i;
    25             if(x%2==0&&find(x/2)==i)
    26             {
    27                 ans=x/2;
    28                 break;
    29             }
    30         }
    31         printf("%I64d
    ",ans);
    32     }
    33         
    34     return 0;
    35 }
  • 相关阅读:
    为html瘦身的pythonl函数
    python字符编码演示三则
    爬虫任务队列方案以及性能测试
    从一道动态规划到卡特兰数
    LeetCode 24 JAVA
    链表笔记
    KMP 算法
    LeetCode 有效数独 JAVA
    Leetcode 139 单词拆分 JAVA
    Leetcode 845 数组的山脉 JAVA
  • 原文地址:https://www.cnblogs.com/awsent/p/4280487.html
Copyright © 2011-2022 走看看