zoukankan      html  css  js  c++  java
  • (寒假CF)!

    题意:给出两组数字,第二组数字代表第一组数字中的第几位。求从那一位开始,后面不同的数的个数

     

    Description

    Sereja has an array a, consisting of n integers a1a2..., an. The boy cannot sit and do nothing, he decided to study an array. Sereja took a piece of paper and wrote out m integers l1, l2, ..., lm(1 ≤ li ≤ n). For each number li he wants to know how many distinct numbers are staying on the positions lili + 1, ..., n. Formally, he want to find the number of distinct numbers among ali, ali + 1, ..., an.?

    Sereja wrote out the necessary array elements but the array was so large and the boy was so pressed for time. Help him, find the answer for the described question for each li.

    Input

    The first line contains two integers n and m(1 ≤ n, m ≤ 105). The second line contains n integers a1a2..., an(1 ≤ ai ≤ 105) — the array elements.

    Next m lines contain integers l1, l2, ..., lm. The i-th line contains integer li(1 ≤ li ≤ n).

    Output

    Print m lines — on the i-th line print the answer to the number li.

    Sample Input

    Input
    10 10
    1 2 3 4 1 2 3 4 100000 99999
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    Output
    6
    6
    6
    6
    6
    5
    4
    3
    2
    1
    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    using namespace std;
    int main()
    {
        int n,m,k,i,l;
        int a[100001],b[100001],s[100001];
        while(~scanf("%d %d",&n,&m))
        {
            memset(b,0,sizeof(b));
            memset(s,0,sizeof(s));
            for(i=1;i<=n;i++)
                scanf("%d",&a[i]);
            int ans=0;
            for(i=n;i>=1;i++)
            {
                if(!s[a[i]])
                {
                    ans++;
                    s[a[i]]=1;
                }
                    b[i]=ans;
            }
            while(m--)
            {
                scanf("%d",&l);
                printf("%d
    ",b[l]);
            }
        }
        return 0;
    }
  • 相关阅读:
    LeetCode Binary Tree Inorder Traversal
    解析看病难看病贵
    [转]微服务概念解析
    OC中几种延时操作的比較
    Android AOP之路三 Android上的注解
    浅析C#中的托付
    图类算法总结
    有关https安全的相关内容介绍
    BZOJ 3684: 大朋友和多叉树 [拉格朗日反演 多项式k次幂 生成函数]
    Codeforces 250 E. The Child and Binary Tree [多项式开根 生成函数]
  • 原文地址:https://www.cnblogs.com/awsent/p/4288833.html
Copyright © 2011-2022 走看看