Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero. Note: Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c) The solution set must not contain duplicate triplets. For example, given array S = {-1 0 1 2 -1 -4}, A solution set is: (-1, 0, 1) (-1, -1, 2)
思路:这道题和2sum类型差不多,先排序,然后枚举第一个数,再设置头尾两个指针(j=i+1,k=n-1),这样就相当于在查找两个数之和为目标值一样了。还有一点值得注意的是,去重判断。
class Solution { public: vector<vector<int> > threeSum(vector<int> &num) { int n=num.size(); vector<vector<int> > result; result.clear(); if(n<3) return result; sort(num.begin(),num.end()); for(int i=0;i<n;i++) { if(i!=0 && num[i]==num[i-1]) continue; int j=i+1,k=n-1; while(j<k) { if(j>i+1 && num[j]==num[j-1]) { j++; continue; } if(k<n-1 && num[k]==num[k+1]) { k--; continue; } int sum=num[i]+num[j]+num[k]; if(sum==0) { vector<int> temp; temp.push_back(num[i]); temp.push_back(num[j]); temp.push_back(num[k]); result.push_back(temp); j++; } else if(sum<0) { j++; } else { k--; } } } return result; } };