zoukankan      html  css  js  c++  java
  • Codeforces Round #731 (Div. 3) 题解 (DEFG)

    免责说明:题解短是因为题目太裸(doge)

    又好久没打 CF 了,而且代码风格大变,需要一段时间适应 qwq。

    D. Co-growing Sequence

    大意:自己看。

    由于输出字典序最小的 y,因此先试着让 (y_1) 最小。显然,(y_2) 可以是任何数,也就意味着 (x_2oplus y_2) 可以是任何数,那么 (y_1) 可以是 0(让 (y_2) 来适应 (y_1))。

    又由于 (x_1oplus y_1 subseteq x_2oplus y_2),前者已知,可以直接计算 (y_2) 最小值(最小值为 (z)(x_2) 的差值,z - (z & x2),其中 (z=x_1oplus y_1))。(y_3,y_4,ldots) 也都可以这么求。

    #include <bits/stdc++.h>
    #define repeat(i, a, b) for (int i = (a), ib = (b); i < ib; i++)
    #define repeat_back(i, a, b) for (int i = (b) - 1, ib = (a);i >= ib; i--)
    #define mst(a, x) memset(a, x, sizeof(a))
    #define fi first
    #define se second
    #define int ll
    using namespace std;
    namespace start {
    	typedef long long ll; const int inf = INT_MAX >> 1; const ll INF = INT64_MAX >> 1;
    		ll read() { ll x; if (scanf("%lld", &x) != 1) exit(0); return x; } // will detect EOF
    		void print(ll x, bool e = 0) { printf("%lld%c", x, " 
    "[e]); }
    } using namespace start;
    void Solve() {
    	int n = read();
    	int pre = 0;
    	repeat (i, 0, n) {
    		int x = read();
    		print(pre - (x & pre), i == n - 1);
    		pre |= x;
    	}
    }
    signed main() {
    	// freopen("data.txt", "r", stdin);
    	int T = 1; T = read();
    	repeat (ca, 1, T + 1) {
    		Solve();
    	}
    	return 0;
    }
    

    E. Air Conditioners

    大意:一些地方有一些空调。一个位置的温度为对每一空调,空调温度加空调到这里的距离,的最小值。求每一位置温度。

    直接 for 两倍处理。没搞懂为什么放 D 题后面。()

    #include <bits/stdc++.h>
    #define repeat(i, a, b) for (int i = (a), ib = (b); i < ib; i++)
    #define repeat_back(i, a, b) for (int i = (b) - 1, ib = (a);i >= ib; i--)
    #define mst(a, x) memset(a, x, sizeof(a))
    #define fi first
    #define se second
    #define int ll
    using namespace std;
    namespace start {
    	typedef long long ll; const int inf = INT_MAX >> 1; const ll INF = INT64_MAX >> 1;
    	mt19937 rnd(chrono::high_resolution_clock::now().time_since_epoch().count());
    		ll read() { ll x; if (scanf("%lld", &x) != 1) exit(0); return x; } // will detect EOF
    		void print(ll x, bool e = 0) { printf("%lld%c", x, " 
    "[e]); }
    	const int N = 300010;
    } using namespace start;
    int a[N], x[N], t[N];
    void Solve() {
    	int n = read(), k = read();
    	fill(a + 1, a + n + 1, inf);
    	repeat (i, 0, k)
    		x[i] = read();
    	repeat (i, 0, k)
    		t[i] = read();
    	repeat (i, 0, k) {
    		a[x[i]] = t[i];
    	}
    	repeat (i, 2, n + 1) a[i] = min(a[i], a[i - 1] + 1);
    	repeat_back (i, 1, n) a[i] = min(a[i], a[i + 1] + 1);
    	repeat (i, 1, n + 1) print(a[i], i == n);
    }
    signed main() {
    	// freopen("data.txt", "r", stdin);
    	int T = 1; T = read();
    	repeat (ca, 1, T + 1) {
    		Solve();
    	}
    	return 0;
    }
    

    F. Array Stabilization (GCD version)

    大意:一个循环序列 a,令 b[i] = gcd(a[i], a[i + 1]),然后 b 将 a 替换,为一次操作。问至少多少次操作 a 只有一种元素。

    想了好久,感觉朴素分解质因数复杂度不行,后来就换成线性筛优化了。

    第一步,最后剩下的肯定是 n 个 gcd(a[1..n])。把初始 (a[i]) 都除以这个数,作为预处理。

    然后将每一 (a[i]) 分解质因数,对于每一质因数单独讨论(显然可以独立计算)。答案就是有同一质因数的最大区间长度(要考虑循环)。比如 [2, 0, 4, 2][4, 2, 2] 就是一个合法区间,答案为 3。

    #include <bits/stdc++.h>
    #define repeat(i, a, b) for (int i = (a), ib = (b); i < ib; i++)
    #define repeat_back(i, a, b) for (int i = (b) - 1, ib = (a);i >= ib; i--)
    #define mst(a, x) memset(a, x, sizeof(a))
    #define fi first
    #define se second
    #define int ll
    using namespace std;
    namespace start {
    	typedef long long ll; const int inf = INT_MAX >> 1; const ll INF = INT64_MAX >> 1;
    		ll read() { ll x; if (scanf("%lld", &x) != 1) exit(0); return x; } // will detect EOF
    		void print(ll x, bool e = 0) { printf("%lld%c", x, " 
    "[e]); }
    	const int N = 1000010;
    } using namespace start;
    struct Sieve {
    	static const int N = 1000010;
    	bool vis[N]; int lpf[N]; vector<int> prime;
    	Sieve() {
    		vis[1] = 1;
    		repeat (i, 2, N) {
    			if (!vis[i]) prime.push_back(i), lpf[i] = i;
    			for (auto j : prime) {
    				if (i * j >= N) break;
    				vis[i * j] = 1; lpf[i * j] = j;
    				if (i % j == 0) break;
    			}
    		}
    	}
    } sieve;
    int a[N];
    bool f[N];
    int ans, n;
    void calc(vector<int> &v) {
    	repeat (i, 0, v.size()) v.push_back(v[i] + n);
    	int cnt = 1;
    	repeat (i, 1, v.size()) {
    		if (v[i] == v[i - 1] + 1) cnt++; else cnt = 1;
    		ans = max(ans, cnt);
    	}
    }
    vector<int> rec[N], appear;
    void Solve() {
    	n = read();
    	int d = 1;
    	repeat (i, 0, n) {
    		a[i] = read();
    		d = (i == 0 ? a[i] : __gcd(d, a[i]));
    	}
    	repeat (i, 0, n) a[i] /= d;
    	repeat (i, 0, n) {
    		while (a[i] != 1) {
    			int t = sieve.lpf[a[i]];
    			rec[t].push_back(i);
    			appear.push_back(t);
    			while (sieve.lpf[a[i]] == t) a[i] /= t;
    		}
    	}
    	ans = 0;
    	for (auto i : appear) {
    		calc(rec[i]);
    		rec[i].clear();
    	}
    	appear.clear();
    	print(ans, 1);
    }
    signed main() {
    	// freopen("data.txt", "r", stdin);
    	int T = 1; T = read();
    	repeat (ca, 1, T + 1) {
    		Solve();
    	}
    	return 0;
    }
    

    G. How Many Paths?

    大意:给一张有向图,可以有自环,问 1 到 i 的路径数是哪种情况(没有路径,有唯一路径,有多个且有限路径,有无数个路径)。

    很裸的 SCC 缩点后 DAG 上 DP。板子硬套即可。

    对于 DAG 的 DP,取反图比较好写。如果 u 的下一个点是 v,且 v 到 1 路径数情况已知(可以往下 DFS,也可以拓扑排序),u 的情况也很好计算。注意如果 u 缩点前是多个顶点的 SCC 或者有自环,那 u 只有两种情况,没有路径和有无数个路径。

    #include <bits/stdc++.h>
    #define repeat(i, a, b) for (int i = (a), ib = (b); i < ib; i++)
    #define repeat_back(i, a, b) for (int i = (b) - 1, ib = (a);i >= ib; i--)
    #define mst(a, x) memset(a, x, sizeof(a))
    #define fi first
    #define se second
    #define int ll
    using namespace std;
    namespace start {
    	typedef long long ll; const int inf = INT_MAX >> 1; const ll INF = INT64_MAX >> 1;
    	typedef pair<int, int> pii;
    		ll read() { ll x; if (scanf("%lld", &x) != 1) exit(0); return x; } // will detect EOF
    		void print(ll x, bool e = 0) { printf("%lld%c", x, " 
    "[e]); }
    	const int N = 1000010;
    } using namespace start;
    vector<int> a[N];
    stack<int> stk;
    bool vis[N], instk[N];
    int dfn[N], low[N], co[N], w[N];
    vector<int> sz;
    int n, dcnt;
    void dfs(int x) { // Tarjan
    	vis[x] = instk[x] = 1; stk.push(x);
    	dfn[x] = low[x] = ++dcnt;
    	for(auto p : a[x]) {
    		if (!vis[p]) dfs(p);
    		if (instk[p]) low[x] = min(low[x], low[p]);
    	}
    	if (low[x] == dfn[x]) {
    		int t; sz.push_back(0);
    		do {
    			t = stk.top();
    			stk.pop();
    			instk[t] = 0;
    			sz.back() += w[x];
    			co[t] = sz.size() - 1;
    		} while (t != x);
    	}
    }
    void getscc() {
    	fill(vis, vis + n, 0);
    	sz.clear();
    	repeat (i, 0, n) if (!vis[i]) dfs(i);
    }
    void shrink() { // result: a, n (inplace)
    	static set<pii> eset;
    	eset.clear();
    	getscc();
    	repeat (i, 0, n)
    	for (auto p : a[i])
    	if (co[i] != co[p])
    		eset.insert({co[i], co[p]});
    	n = sz.size();
    	repeat (i, 0, n){
    		a[i].clear();
    		w[i] = sz[i];
    	}
    	for(auto i : eset){
    		a[i.fi].push_back(i.se);
    		// a[i.se].push_back(i.fi);
    	}
    }
    int ans[N];
    void ddfs(int x) {
    	vis[x] = 1; ans[x] = 0;
    	if (x == co[0]) { ans[x] = (w[x] >= 2 ? -1 : 1); return; }
    	int infty = 0, cnt = 0;
    	for (auto p : a[x]) {
    		if (!vis[p]) ddfs(p);
    		if (ans[p] == -1) infty = 1;
    		if (ans[p] == 2) cnt = 2;
    		if (ans[p] == 1) cnt++;
    	}
    	if (cnt && w[x] >= 2) infty = 1;
    	if (infty) ans[x] = -1; else ans[x] = min(cnt, 2ll);
    }
    void Solve() {
    	int n0 = n = read(); int m = read();
    	fill (w, w + n, 1);
    	repeat (i, 0, n) a[i].clear();
    	repeat (i, 0, m) {
    		int x = read() - 1, y = read() - 1;
    		if (x == y) w[x] = 2;
    		else a[y].push_back(x);
    	}
    	shrink();
    	fill (vis, vis + n, 0);
    	repeat (i, 0, n) if (!vis[i]) ddfs(i);
    	repeat (i, 0, n0) print(ans[co[i]], i == n0 - 1);
    }
    signed main() {
    	// freopen("data.txt", "r", stdin);
    	int T = 1; T = read();
    	repeat (ca, 1, T + 1) {
    		Solve();
    	}
    	return 0;
    }
    
  • 相关阅读:
    Tair分布式key/value存储
    Ehcache详细解读
    专访阿里中间件高级专家沈询
    boost之词法解析器spirit
    快速部署Python应用:Nginx+uWSGI配置详解
    CMake如何执行shell命令
    show engine innodb status 详解
    HTTP Request header
    json python api
    mysql 索引对于select速度提升作用实验
  • 原文地址:https://www.cnblogs.com/axiomofchoice/p/14995474.html
Copyright © 2011-2022 走看看