http://www.cplusplus.com/reference/stl/list/
http://www.cppblog.com/Lee7/archive/2008/04/14/47036.html
由于要使用一个带有C++ List的类,需要获得放入list<>数据中数据的多少.于是乎,找啊找,没找到.最后还是在Cplusplus.com找到了reference,简直太棒了,许多东西都可以在这个上面找到。
上面cpp博客的示例很不错。挖过来了
View Code
1 #include <iostream> 2 #include <list> 3 #include <numeric> 4 #include <algorithm> 5 6 using namespace std; 7 8 //创建一个list容器的实例LISTINT 9 typedef list<int> LISTINT; 10 11 //创建一个list容器的实例LISTCHAR 12 typedef list<int> LISTCHAR; 13 14 void main(void) 15 { 16 //-------------------------- 17 //用list容器处理整型数据 18 //-------------------------- 19 //用LISTINT创建一个名为listOne的list对象 20 LISTINT listOne; 21 //声明i为迭代器 22 LISTINT::iterator i; 23 24 //从前面向listOne容器中添加数据 25 listOne.push_front (2); 26 listOne.push_front (1); 27 28 //从后面向listOne容器中添加数据 29 listOne.push_back (3); 30 listOne.push_back (4); 31 32 //从前向后显示listOne中的数据 33 cout<<"listOne.begin()--- listOne.end():"<<endl; 34 for (i = listOne.begin(); i != listOne.end(); ++i) 35 cout << *i << " "; 36 cout << endl; 37 38 //从后向后显示listOne中的数据 39 LISTINT::reverse_iterator ir; 40 cout<<"listOne.rbegin()---listOne.rend():"<<endl; 41 for (ir =listOne.rbegin(); ir!=listOne.rend();ir++) { 42 cout << *ir << " "; 43 } 44 cout << endl; 45 46 //使用STL的accumulate(累加)算法 47 int result = accumulate(listOne.begin(), listOne.end(),0); 48 cout<<"Sum="<<result<<endl; 49 cout<<"------------------"<<endl; 50 51 //-------------------------- 52 //用list容器处理字符型数据 53 //-------------------------- 54 55 //用LISTCHAR创建一个名为listOne的list对象 56 LISTCHAR listTwo; 57 //声明i为迭代器 58 LISTCHAR::iterator j; 59 60 //从前面向listTwo容器中添加数据 61 listTwo.push_front ('A'); 62 listTwo.push_front ('B'); 63 64 //从后面向listTwo容器中添加数据 65 listTwo.push_back ('x'); 66 listTwo.push_back ('y'); 67 68 //从前向后显示listTwo中的数据 69 cout<<"listTwo.begin()---listTwo.end():"<<endl; 70 for (j = listTwo.begin(); j != listTwo.end(); ++j) 71 cout << char(*j) << " "; 72 cout << endl; 73 74 //使用STL的max_element算法求listTwo中的最大元素并显示 75 j=max_element(listTwo.begin(),listTwo.end()); 76 cout << "The maximum element in listTwo is: "<<char(*j)<<endl; 77 } 78 79 #include <iostream> 80 #include <list> 81 82 using namespace std; 83 typedef list<int> INTLIST; 84 85 //从前向后显示list队列的全部元素 86 void put_list(INTLIST list, char *name) 87 { 88 INTLIST::iterator plist; 89 90 cout << "The contents of " << name << " : "; 91 for(plist = list.begin(); plist != list.end(); plist++) 92 cout << *plist << " "; 93 cout<<endl; 94 } 95 96 //测试list容器的功能 97 void main(void) 98 { 99 //list1对象初始为空 100 INTLIST list1; 101 //list2对象最初有10个值为6的元素 102 INTLIST list2(10,6); 103 //list3对象最初有3个值为6的元素 104 INTLIST list3(list2.begin(),--list2.end()); 105 106 //声明一个名为i的双向迭代器 107 INTLIST::iterator i; 108 109 //从前向后显示各list对象的元素 110 put_list(list1,"list1"); 111 put_list(list2,"list2"); 112 put_list(list3,"list3"); 113 114 //从list1序列后面添加两个元素 115 list1.push_back(2); 116 list1.push_back(4); 117 cout<<"list1.push_back(2) and list1.push_back(4):"<<endl; 118 put_list(list1,"list1"); 119 120 //从list1序列前面添加两个元素 121 list1.push_front(5); 122 list1.push_front(7); 123 cout<<"list1.push_front(5) and list1.push_front(7):"<<endl; 124 put_list(list1,"list1"); 125 126 //在list1序列中间插入数据 127 list1.insert(++list1.begin(),3,9); 128 cout<<"list1.insert(list1.begin()+1,3,9):"<<endl; 129 put_list(list1,"list1"); 130 131 //测试引用类函数 132 cout<<"list1.front()="<<list1.front()<<endl; 133 cout<<"list1.back()="<<list1.back()<<endl; 134 135 //从list1序列的前后各移去一个元素 136 list1.pop_front(); 137 list1.pop_back(); 138 cout<<"list1.pop_front() and list1.pop_back():"<<endl; 139 put_list(list1,"list1"); 140 141 //清除list1中的第2个元素 142 list1.erase(++list1.begin()); 143 cout<<"list1.erase(++list1.begin()):"<<endl; 144 put_list(list1,"list1"); 145 146 //对list2赋值并显示 147 list2.assign(8,1); 148 cout<<"list2.assign(8,1):"<<endl; 149 put_list(list2,"list2"); 150 151 //显示序列的状态信息 152 cout<<"list1.max_size(): "<<list1.max_size()<<endl; 153 cout<<"list1.size(): "<<list1.size()<<endl; 154 cout<<"list1.empty(): "<<list1.empty()<<endl; 155 156 //list序列容器的运算 157 put_list(list1,"list1"); 158 put_list(list3,"list3"); 159 cout<<"list1>list3: "<<(list1>list3)<<endl; 160 cout<<"list1<list3: "<<(list1<list3)<<endl; 161 162 //对list1容器排序 163 list1.sort(); 164 put_list(list1,"list1"); 165 166 //结合处理 167 list1.splice(++list1.begin(), list3); 168 put_list(list1,"list1"); 169 put_list(list3,"list3"); 170 }
list的定义在:/usr/include/c++/4.4/bits/stl_list.h
定义为:
View Code
// List implementation -*- C++ -*- // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 // Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // <http://www.gnu.org/licenses/>. /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996,1997 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file stl_list.h * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */ #ifndef _STL_LIST_H #define _STL_LIST_H 1 #include <bits/concept_check.h> #include <initializer_list> _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D) // Supporting structures are split into common and templated types; the // latter publicly inherits from the former in an effort to reduce code // duplication. This results in some "needless" static_cast'ing later on, // but it's all safe downcasting. /// Common part of a node in the %list. struct _List_node_base { _List_node_base* _M_next; _List_node_base* _M_prev; static void swap(_List_node_base& __x, _List_node_base& __y); void transfer(_List_node_base * const __first, _List_node_base * const __last); void reverse(); void hook(_List_node_base * const __position); void unhook(); }; /// An actual node in the %list. template<typename _Tp> struct _List_node : public _List_node_base { ///< User's data. _Tp _M_data; #ifdef __GXX_EXPERIMENTAL_CXX0X__ template<typename... _Args> _List_node(_Args&&... __args) : _List_node_base(), _M_data(std::forward<_Args>(__args)...) { } #endif }; /** * @brief A list::iterator. * * All the functions are op overloads. */ template<typename _Tp> struct _List_iterator { typedef _List_iterator<_Tp> _Self; typedef _List_node<_Tp> _Node; typedef ptrdiff_t difference_type; typedef std::bidirectional_iterator_tag iterator_category; typedef _Tp value_type; typedef _Tp* pointer; typedef _Tp& reference; _List_iterator() : _M_node() { } explicit _List_iterator(_List_node_base* __x) : _M_node(__x) { } // Must downcast from List_node_base to _List_node to get to _M_data. reference operator*() const { return static_cast<_Node*>(_M_node)->_M_data; } pointer operator->() const { return &static_cast<_Node*>(_M_node)->_M_data; } _Self& operator++() { _M_node = _M_node->_M_next; return *this; } _Self operator++(int) { _Self __tmp = *this; _M_node = _M_node->_M_next; return __tmp; } _Self& operator--() { _M_node = _M_node->_M_prev; return *this; } _Self operator--(int) { _Self __tmp = *this; _M_node = _M_node->_M_prev; return __tmp; } bool operator==(const _Self& __x) const { return _M_node == __x._M_node; } bool operator!=(const _Self& __x) const { return _M_node != __x._M_node; } // The only member points to the %list element. _List_node_base* _M_node; }; /** * @brief A list::const_iterator. * * All the functions are op overloads. */ template<typename _Tp> struct _List_const_iterator { typedef _List_const_iterator<_Tp> _Self; typedef const _List_node<_Tp> _Node; typedef _List_iterator<_Tp> iterator; typedef ptrdiff_t difference_type; typedef std::bidirectional_iterator_tag iterator_category; typedef _Tp value_type; typedef const _Tp* pointer; typedef const _Tp& reference; _List_const_iterator() : _M_node() { } explicit _List_const_iterator(const _List_node_base* __x) : _M_node(__x) { } _List_const_iterator(const iterator& __x) : _M_node(__x._M_node) { } // Must downcast from List_node_base to _List_node to get to // _M_data. reference operator*() const { return static_cast<_Node*>(_M_node)->_M_data; } pointer operator->() const { return &static_cast<_Node*>(_M_node)->_M_data; } _Self& operator++() { _M_node = _M_node->_M_next; return *this; } _Self operator++(int) { _Self __tmp = *this; _M_node = _M_node->_M_next; return __tmp; } _Self& operator--() { _M_node = _M_node->_M_prev; return *this; } _Self operator--(int) { _Self __tmp = *this; _M_node = _M_node->_M_prev; return __tmp; } bool operator==(const _Self& __x) const { return _M_node == __x._M_node; } bool operator!=(const _Self& __x) const { return _M_node != __x._M_node; } // The only member points to the %list element. const _List_node_base* _M_node; }; template<typename _Val> inline bool operator==(const _List_iterator<_Val>& __x, const _List_const_iterator<_Val>& __y) { return __x._M_node == __y._M_node; } template<typename _Val> inline bool operator!=(const _List_iterator<_Val>& __x, const _List_const_iterator<_Val>& __y) { return __x._M_node != __y._M_node; } /// See bits/stl_deque.h's _Deque_base for an explanation. template<typename _Tp, typename _Alloc> class _List_base { protected: // NOTA BENE // The stored instance is not actually of "allocator_type"'s // type. Instead we rebind the type to // Allocator<List_node<Tp>>, which according to [20.1.5]/4 // should probably be the same. List_node<Tp> is not the same // size as Tp (it's two pointers larger), and specializations on // Tp may go unused because List_node<Tp> is being bound // instead. // // We put this to the test in the constructors and in // get_allocator, where we use conversions between // allocator_type and _Node_alloc_type. The conversion is // required by table 32 in [20.1.5]. typedef typename _Alloc::template rebind<_List_node<_Tp> >::other _Node_alloc_type; typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type; struct _List_impl : public _Node_alloc_type { _List_node_base _M_node; _List_impl() : _Node_alloc_type(), _M_node() { } _List_impl(const _Node_alloc_type& __a) : _Node_alloc_type(__a), _M_node() { } }; _List_impl _M_impl; _List_node<_Tp>* _M_get_node() { return _M_impl._Node_alloc_type::allocate(1); } void _M_put_node(_List_node<_Tp>* __p) { _M_impl._Node_alloc_type::deallocate(__p, 1); } public: typedef _Alloc allocator_type; _Node_alloc_type& _M_get_Node_allocator() { return *static_cast<_Node_alloc_type*>(&this->_M_impl); } const _Node_alloc_type& _M_get_Node_allocator() const { return *static_cast<const _Node_alloc_type*>(&this->_M_impl); } _Tp_alloc_type _M_get_Tp_allocator() const { return _Tp_alloc_type(_M_get_Node_allocator()); } allocator_type get_allocator() const { return allocator_type(_M_get_Node_allocator()); } _List_base() : _M_impl() { _M_init(); } _List_base(const allocator_type& __a) : _M_impl(__a) { _M_init(); } #ifdef __GXX_EXPERIMENTAL_CXX0X__ _List_base(_List_base&& __x) : _M_impl(__x._M_get_Node_allocator()) { _M_init(); _List_node_base::swap(this->_M_impl._M_node, __x._M_impl._M_node); } #endif // This is what actually destroys the list. ~_List_base() { _M_clear(); } void _M_clear(); void _M_init() { this->_M_impl._M_node._M_next = &this->_M_impl._M_node; this->_M_impl._M_node._M_prev = &this->_M_impl._M_node; } }; /** * @brief A standard container with linear time access to elements, * and fixed time insertion/deletion at any point in the sequence. * * @ingroup sequences * * Meets the requirements of a <a href="tables.html#65">container</a>, a * <a href="tables.html#66">reversible container</a>, and a * <a href="tables.html#67">sequence</a>, including the * <a href="tables.html#68">optional sequence requirements</a> with the * %exception of @c at and @c operator[]. * * This is a @e doubly @e linked %list. Traversal up and down the * %list requires linear time, but adding and removing elements (or * @e nodes) is done in constant time, regardless of where the * change takes place. Unlike std::vector and std::deque, * random-access iterators are not provided, so subscripting ( @c * [] ) access is not allowed. For algorithms which only need * sequential access, this lack makes no difference. * * Also unlike the other standard containers, std::list provides * specialized algorithms %unique to linked lists, such as * splicing, sorting, and in-place reversal. * * A couple points on memory allocation for list<Tp>: * * First, we never actually allocate a Tp, we allocate * List_node<Tp>'s and trust [20.1.5]/4 to DTRT. This is to ensure * that after elements from %list<X,Alloc1> are spliced into * %list<X,Alloc2>, destroying the memory of the second %list is a * valid operation, i.e., Alloc1 giveth and Alloc2 taketh away. * * Second, a %list conceptually represented as * @code * A <---> B <---> C <---> D * @endcode * is actually circular; a link exists between A and D. The %list * class holds (as its only data member) a private list::iterator * pointing to @e D, not to @e A! To get to the head of the %list, * we start at the tail and move forward by one. When this member * iterator's next/previous pointers refer to itself, the %list is * %empty. */ template<typename _Tp, typename _Alloc = std::allocator<_Tp> > class list : protected _List_base<_Tp, _Alloc> { // concept requirements typedef typename _Alloc::value_type _Alloc_value_type; __glibcxx_class_requires(_Tp, _SGIAssignableConcept) __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept) typedef _List_base<_Tp, _Alloc> _Base; typedef typename _Base::_Tp_alloc_type _Tp_alloc_type; public: typedef _Tp value_type; typedef typename _Tp_alloc_type::pointer pointer; typedef typename _Tp_alloc_type::const_pointer const_pointer; typedef typename _Tp_alloc_type::reference reference; typedef typename _Tp_alloc_type::const_reference const_reference; typedef _List_iterator<_Tp> iterator; typedef _List_const_iterator<_Tp> const_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator; typedef std::reverse_iterator<iterator> reverse_iterator; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Alloc allocator_type; protected: // Note that pointers-to-_Node's can be ctor-converted to // iterator types. typedef _List_node<_Tp> _Node; using _Base::_M_impl; using _Base::_M_put_node; using _Base::_M_get_node; using _Base::_M_get_Tp_allocator; using _Base::_M_get_Node_allocator; /** * @param x An instance of user data. * * Allocates space for a new node and constructs a copy of @a x in it. */ #ifndef __GXX_EXPERIMENTAL_CXX0X__ _Node* _M_create_node(const value_type& __x) { _Node* __p = this->_M_get_node(); __try { _M_get_Tp_allocator().construct(&__p->_M_data, __x); } __catch(...) { _M_put_node(__p); __throw_exception_again; } return __p; } #else template<typename... _Args> _Node* _M_create_node(_Args&&... __args) { _Node* __p = this->_M_get_node(); __try { _M_get_Node_allocator().construct(__p, std::forward<_Args>(__args)...); } __catch(...) { _M_put_node(__p); __throw_exception_again; } return __p; } #endif public: // [23.2.2.1] construct/copy/destroy // (assign() and get_allocator() are also listed in this section) /** * @brief Default constructor creates no elements. */ list() : _Base() { } /** * @brief Creates a %list with no elements. * @param a An allocator object. */ explicit list(const allocator_type& __a) : _Base(__a) { } /** * @brief Creates a %list with copies of an exemplar element. * @param n The number of elements to initially create. * @param value An element to copy. * @param a An allocator object. * * This constructor fills the %list with @a n copies of @a value. */ explicit list(size_type __n, const value_type& __value = value_type(), const allocator_type& __a = allocator_type()) : _Base(__a) { _M_fill_initialize(__n, __value); } /** * @brief %List copy constructor. * @param x A %list of identical element and allocator types. * * The newly-created %list uses a copy of the allocation object used * by @a x. */ list(const list& __x) : _Base(__x._M_get_Node_allocator()) { _M_initialize_dispatch(__x.begin(), __x.end(), __false_type()); } #ifdef __GXX_EXPERIMENTAL_CXX0X__ /** * @brief %List move constructor. * @param x A %list of identical element and allocator types. * * The newly-created %list contains the exact contents of @a x. * The contents of @a x are a valid, but unspecified %list. */ list(list&& __x) : _Base(std::forward<_Base>(__x)) { } /** * @brief Builds a %list from an initializer_list * @param l An initializer_list of value_type. * @param a An allocator object. * * Create a %list consisting of copies of the elements in the * initializer_list @a l. This is linear in l.size(). */ list(initializer_list<value_type> __l, const allocator_type& __a = allocator_type()) : _Base(__a) { _M_initialize_dispatch(__l.begin(), __l.end(), __false_type()); } #endif /** * @brief Builds a %list from a range. * @param first An input iterator. * @param last An input iterator. * @param a An allocator object. * * Create a %list consisting of copies of the elements from * [@a first,@a last). This is linear in N (where N is * distance(@a first,@a last)). */ template<typename _InputIterator> list(_InputIterator __first, _InputIterator __last, const allocator_type& __a = allocator_type()) : _Base(__a) { // Check whether it's an integral type. If so, it's not an iterator. typedef typename std::__is_integer<_InputIterator>::__type _Integral; _M_initialize_dispatch(__first, __last, _Integral()); } /** * No explicit dtor needed as the _Base dtor takes care of * things. The _Base dtor only erases the elements, and note * that if the elements themselves are pointers, the pointed-to * memory is not touched in any way. Managing the pointer is * the user's responsibility. */ /** * @brief %List assignment operator. * @param x A %list of identical element and allocator types. * * All the elements of @a x are copied, but unlike the copy * constructor, the allocator object is not copied. */ list& operator=(const list& __x); #ifdef __GXX_EXPERIMENTAL_CXX0X__ /** * @brief %List move assignment operator. * @param x A %list of identical element and allocator types. * * The contents of @a x are moved into this %list (without copying). * @a x is a valid, but unspecified %list */ list& operator=(list&& __x) { // NB: DR 675. this->clear(); this->swap(__x); return *this; } /** * @brief %List initializer list assignment operator. * @param l An initializer_list of value_type. * * Replace the contents of the %list with copies of the elements * in the initializer_list @a l. This is linear in l.size(). */ list& operator=(initializer_list<value_type> __l) { this->assign(__l.begin(), __l.end()); return *this; } #endif /** * @brief Assigns a given value to a %list. * @param n Number of elements to be assigned. * @param val Value to be assigned. * * This function fills a %list with @a n copies of the given * value. Note that the assignment completely changes the %list * and that the resulting %list's size is the same as the number * of elements assigned. Old data may be lost. */ void assign(size_type __n, const value_type& __val) { _M_fill_assign(__n, __val); } /** * @brief Assigns a range to a %list. * @param first An input iterator. * @param last An input iterator. * * This function fills a %list with copies of the elements in the * range [@a first,@a last). * * Note that the assignment completely changes the %list and * that the resulting %list's size is the same as the number of * elements assigned. Old data may be lost. */ template<typename _InputIterator> void assign(_InputIterator __first, _InputIterator __last) { // Check whether it's an integral type. If so, it's not an iterator. typedef typename std::__is_integer<_InputIterator>::__type _Integral; _M_assign_dispatch(__first, __last, _Integral()); } #ifdef __GXX_EXPERIMENTAL_CXX0X__ /** * @brief Assigns an initializer_list to a %list. * @param l An initializer_list of value_type. * * Replace the contents of the %list with copies of the elements * in the initializer_list @a l. This is linear in l.size(). */ void assign(initializer_list<value_type> __l) { this->assign(__l.begin(), __l.end()); } #endif /// Get a copy of the memory allocation object. allocator_type get_allocator() const { return _Base::get_allocator(); } // iterators /** * Returns a read/write iterator that points to the first element in the * %list. Iteration is done in ordinary element order. */ iterator begin() { return iterator(this->_M_impl._M_node._M_next); } /** * Returns a read-only (constant) iterator that points to the * first element in the %list. Iteration is done in ordinary * element order. */ const_iterator begin() const { return const_iterator(this->_M_impl._M_node._M_next); } /** * Returns a read/write iterator that points one past the last * element in the %list. Iteration is done in ordinary element * order. */ iterator end() { return iterator(&this->_M_impl._M_node); } /** * Returns a read-only (constant) iterator that points one past * the last element in the %list. Iteration is done in ordinary * element order. */ const_iterator end() const { return const_iterator(&this->_M_impl._M_node); } /** * Returns a read/write reverse iterator that points to the last * element in the %list. Iteration is done in reverse element * order. */ reverse_iterator rbegin() { return reverse_iterator(end()); } /** * Returns a read-only (constant) reverse iterator that points to * the last element in the %list. Iteration is done in reverse * element order. */ const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } /** * Returns a read/write reverse iterator that points to one * before the first element in the %list. Iteration is done in * reverse element order. */ reverse_iterator rend() { return reverse_iterator(begin()); } /** * Returns a read-only (constant) reverse iterator that points to one * before the first element in the %list. Iteration is done in reverse * element order. */ const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } #ifdef __GXX_EXPERIMENTAL_CXX0X__ /** * Returns a read-only (constant) iterator that points to the * first element in the %list. Iteration is done in ordinary * element order. */ const_iterator cbegin() const { return const_iterator(this->_M_impl._M_node._M_next); } /** * Returns a read-only (constant) iterator that points one past * the last element in the %list. Iteration is done in ordinary * element order. */ const_iterator cend() const { return const_iterator(&this->_M_impl._M_node); } /** * Returns a read-only (constant) reverse iterator that points to * the last element in the %list. Iteration is done in reverse * element order. */ const_reverse_iterator crbegin() const { return const_reverse_iterator(end()); } /** * Returns a read-only (constant) reverse iterator that points to one * before the first element in the %list. Iteration is done in reverse * element order. */ const_reverse_iterator crend() const { return const_reverse_iterator(begin()); } #endif // [23.2.2.2] capacity /** * Returns true if the %list is empty. (Thus begin() would equal * end().) */ bool empty() const { return this->_M_impl._M_node._M_next == &this->_M_impl._M_node; } /** Returns the number of elements in the %list. */ size_type size() const { return std::distance(begin(), end()); } /** Returns the size() of the largest possible %list. */ size_type max_size() const { return _M_get_Node_allocator().max_size(); } /** * @brief Resizes the %list to the specified number of elements. * @param new_size Number of elements the %list should contain. * @param x Data with which new elements should be populated. * * This function will %resize the %list to the specified number * of elements. If the number is smaller than the %list's * current size the %list is truncated, otherwise the %list is * extended and new elements are populated with given data. */ void resize(size_type __new_size, value_type __x = value_type()); // element access /** * Returns a read/write reference to the data at the first * element of the %list. */ reference front() { return *begin(); } /** * Returns a read-only (constant) reference to the data at the first * element of the %list. */ const_reference front() const { return *begin(); } /** * Returns a read/write reference to the data at the last element * of the %list. */ reference back() { iterator __tmp = end(); --__tmp; return *__tmp; } /** * Returns a read-only (constant) reference to the data at the last * element of the %list. */ const_reference back() const { const_iterator __tmp = end(); --__tmp; return *__tmp; } // [23.2.2.3] modifiers /** * @brief Add data to the front of the %list. * @param x Data to be added. * * This is a typical stack operation. The function creates an * element at the front of the %list and assigns the given data * to it. Due to the nature of a %list this operation can be * done in constant time, and does not invalidate iterators and * references. */ void push_front(const value_type& __x) { this->_M_insert(begin(), __x); } #ifdef __GXX_EXPERIMENTAL_CXX0X__ void push_front(value_type&& __x) { this->_M_insert(begin(), std::move(__x)); } template<typename... _Args> void emplace_front(_Args&&... __args) { this->_M_insert(begin(), std::forward<_Args>(__args)...); } #endif /** * @brief Removes first element. * * This is a typical stack operation. It shrinks the %list by * one. Due to the nature of a %list this operation can be done * in constant time, and only invalidates iterators/references to * the element being removed. * * Note that no data is returned, and if the first element's data * is needed, it should be retrieved before pop_front() is * called. */ void pop_front() { this->_M_erase(begin()); } /** * @brief Add data to the end of the %list. * @param x Data to be added. * * This is a typical stack operation. The function creates an * element at the end of the %list and assigns the given data to * it. Due to the nature of a %list this operation can be done * in constant time, and does not invalidate iterators and * references. */ void push_back(const value_type& __x) { this->_M_insert(end(), __x); } #ifdef __GXX_EXPERIMENTAL_CXX0X__ void push_back(value_type&& __x) { this->_M_insert(end(), std::move(__x)); } template<typename... _Args> void emplace_back(_Args&&... __args) { this->_M_insert(end(), std::forward<_Args>(__args)...); } #endif /** * @brief Removes last element. * * This is a typical stack operation. It shrinks the %list by * one. Due to the nature of a %list this operation can be done * in constant time, and only invalidates iterators/references to * the element being removed. * * Note that no data is returned, and if the last element's data * is needed, it should be retrieved before pop_back() is called. */ void pop_back() { this->_M_erase(iterator(this->_M_impl._M_node._M_prev)); } #ifdef __GXX_EXPERIMENTAL_CXX0X__ /** * @brief Constructs object in %list before specified iterator. * @param position A const_iterator into the %list. * @param args Arguments. * @return An iterator that points to the inserted data. * * This function will insert an object of type T constructed * with T(std::forward<Args>(args)...) before the specified * location. Due to the nature of a %list this operation can * be done in constant time, and does not invalidate iterators * and references. */ template<typename... _Args> iterator emplace(iterator __position, _Args&&... __args); #endif /** * @brief Inserts given value into %list before specified iterator. * @param position An iterator into the %list. * @param x Data to be inserted. * @return An iterator that points to the inserted data. * * This function will insert a copy of the given value before * the specified location. Due to the nature of a %list this * operation can be done in constant time, and does not * invalidate iterators and references. */ iterator insert(iterator __position, const value_type& __x); #ifdef __GXX_EXPERIMENTAL_CXX0X__ /** * @brief Inserts given rvalue into %list before specified iterator. * @param position An iterator into the %list. * @param x Data to be inserted. * @return An iterator that points to the inserted data. * * This function will insert a copy of the given rvalue before * the specified location. Due to the nature of a %list this * operation can be done in constant time, and does not * invalidate iterators and references. */ iterator insert(iterator __position, value_type&& __x) { return emplace(__position, std::move(__x)); } /** * @brief Inserts the contents of an initializer_list into %list * before specified iterator. * @param p An iterator into the %list. * @param l An initializer_list of value_type. * * This function will insert copies of the data in the * initializer_list @a l into the %list before the location * specified by @a p. * * This operation is linear in the number of elements inserted and * does not invalidate iterators and references. */ void insert(iterator __p, initializer_list<value_type> __l) { this->insert(__p, __l.begin(), __l.end()); } #endif /** * @brief Inserts a number of copies of given data into the %list. * @param position An iterator into the %list. * @param n Number of elements to be inserted. * @param x Data to be inserted. * * This function will insert a specified number of copies of the * given data before the location specified by @a position. * * This operation is linear in the number of elements inserted and * does not invalidate iterators and references. */ void insert(iterator __position, size_type __n, const value_type& __x) { list __tmp(__n, __x, _M_get_Node_allocator()); splice(__position, __tmp); } /** * @brief Inserts a range into the %list. * @param position An iterator into the %list. * @param first An input iterator. * @param last An input iterator. * * This function will insert copies of the data in the range [@a * first,@a last) into the %list before the location specified by * @a position. * * This operation is linear in the number of elements inserted and * does not invalidate iterators and references. */ template<typename _InputIterator> void insert(iterator __position, _InputIterator __first, _InputIterator __last) { list __tmp(__first, __last, _M_get_Node_allocator()); splice(__position, __tmp); } /** * @brief Remove element at given position. * @param position Iterator pointing to element to be erased. * @return An iterator pointing to the next element (or end()). * * This function will erase the element at the given position and thus * shorten the %list by one. * * Due to the nature of a %list this operation can be done in * constant time, and only invalidates iterators/references to * the element being removed. The user is also cautioned that * this function only erases the element, and that if the element * is itself a pointer, the pointed-to memory is not touched in * any way. Managing the pointer is the user's responsibility. */ iterator erase(iterator __position); /** * @brief Remove a range of elements. * @param first Iterator pointing to the first element to be erased. * @param last Iterator pointing to one past the last element to be * erased. * @return An iterator pointing to the element pointed to by @a last * prior to erasing (or end()). * * This function will erase the elements in the range @a * [first,last) and shorten the %list accordingly. * * This operation is linear time in the size of the range and only * invalidates iterators/references to the element being removed. * The user is also cautioned that this function only erases the * elements, and that if the elements themselves are pointers, the * pointed-to memory is not touched in any way. Managing the pointer * is the user's responsibility. */ iterator erase(iterator __first, iterator __last) { while (__first != __last) __first = erase(__first); return __last; } /** * @brief Swaps data with another %list. * @param x A %list of the same element and allocator types. * * This exchanges the elements between two lists in constant * time. Note that the global std::swap() function is * specialized such that std::swap(l1,l2) will feed to this * function. */ void #ifdef __GXX_EXPERIMENTAL_CXX0X__ swap(list&& __x) #else swap(list& __x) #endif { _List_node_base::swap(this->_M_impl._M_node, __x._M_impl._M_node); // _GLIBCXX_RESOLVE_LIB_DEFECTS // 431. Swapping containers with unequal allocators. std::__alloc_swap<typename _Base::_Node_alloc_type>:: _S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator()); } /** * Erases all the elements. Note that this function only erases * the elements, and that if the elements themselves are * pointers, the pointed-to memory is not touched in any way. * Managing the pointer is the user's responsibility. */ void clear() { _Base::_M_clear(); _Base::_M_init(); } // [23.2.2.4] list operations /** * @brief Insert contents of another %list. * @param position Iterator referencing the element to insert before. * @param x Source list. * * The elements of @a x are inserted in constant time in front of * the element referenced by @a position. @a x becomes an empty * list. * * Requires this != @a x. */ void #ifdef __GXX_EXPERIMENTAL_CXX0X__ splice(iterator __position, list&& __x) #else splice(iterator __position, list& __x) #endif { if (!__x.empty()) { _M_check_equal_allocators(__x); this->_M_transfer(__position, __x.begin(), __x.end()); } } /** * @brief Insert element from another %list. * @param position Iterator referencing the element to insert before. * @param x Source list. * @param i Iterator referencing the element to move. * * Removes the element in list @a x referenced by @a i and * inserts it into the current list before @a position. */ void #ifdef __GXX_EXPERIMENTAL_CXX0X__ splice(iterator __position, list&& __x, iterator __i) #else splice(iterator __position, list& __x, iterator __i) #endif { iterator __j = __i; ++__j; if (__position == __i || __position == __j) return; if (this != &__x) _M_check_equal_allocators(__x); this->_M_transfer(__position, __i, __j); } /** * @brief Insert range from another %list. * @param position Iterator referencing the element to insert before. * @param x Source list. * @param first Iterator referencing the start of range in x. * @param last Iterator referencing the end of range in x. * * Removes elements in the range [first,last) and inserts them * before @a position in constant time. * * Undefined if @a position is in [first,last). */ void #ifdef __GXX_EXPERIMENTAL_CXX0X__ splice(iterator __position, list&& __x, iterator __first, iterator __last) #else splice(iterator __position, list& __x, iterator __first, iterator __last) #endif { if (__first != __last) { if (this != &__x) _M_check_equal_allocators(__x); this->_M_transfer(__position, __first, __last); } } /** * @brief Remove all elements equal to value. * @param value The value to remove. * * Removes every element in the list equal to @a value. * Remaining elements stay in list order. Note that this * function only erases the elements, and that if the elements * themselves are pointers, the pointed-to memory is not * touched in any way. Managing the pointer is the user's * responsibility. */ void remove(const _Tp& __value); /** * @brief Remove all elements satisfying a predicate. * @param Predicate Unary predicate function or object. * * Removes every element in the list for which the predicate * returns true. Remaining elements stay in list order. Note * that this function only erases the elements, and that if the * elements themselves are pointers, the pointed-to memory is * not touched in any way. Managing the pointer is the user's * responsibility. */ template<typename _Predicate> void remove_if(_Predicate); /** * @brief Remove consecutive duplicate elements. * * For each consecutive set of elements with the same value, * remove all but the first one. Remaining elements stay in * list order. Note that this function only erases the * elements, and that if the elements themselves are pointers, * the pointed-to memory is not touched in any way. Managing * the pointer is the user's responsibility. */ void unique(); /** * @brief Remove consecutive elements satisfying a predicate. * @param BinaryPredicate Binary predicate function or object. * * For each consecutive set of elements [first,last) that * satisfy predicate(first,i) where i is an iterator in * [first,last), remove all but the first one. Remaining * elements stay in list order. Note that this function only * erases the elements, and that if the elements themselves are * pointers, the pointed-to memory is not touched in any way. * Managing the pointer is the user's responsibility. */ template<typename _BinaryPredicate> void unique(_BinaryPredicate); /** * @brief Merge sorted lists. * @param x Sorted list to merge. * * Assumes that both @a x and this list are sorted according to * operator<(). Merges elements of @a x into this list in * sorted order, leaving @a x empty when complete. Elements in * this list precede elements in @a x that are equal. */ void #ifdef __GXX_EXPERIMENTAL_CXX0X__ merge(list&& __x); #else merge(list& __x); #endif /** * @brief Merge sorted lists according to comparison function. * @param x Sorted list to merge. * @param StrictWeakOrdering Comparison function defining * sort order. * * Assumes that both @a x and this list are sorted according to * StrictWeakOrdering. Merges elements of @a x into this list * in sorted order, leaving @a x empty when complete. Elements * in this list precede elements in @a x that are equivalent * according to StrictWeakOrdering(). */ template<typename _StrictWeakOrdering> void #ifdef __GXX_EXPERIMENTAL_CXX0X__ merge(list&&, _StrictWeakOrdering); #else merge(list&, _StrictWeakOrdering); #endif /** * @brief Reverse the elements in list. * * Reverse the order of elements in the list in linear time. */ void reverse() { this->_M_impl._M_node.reverse(); } /** * @brief Sort the elements. * * Sorts the elements of this list in NlogN time. Equivalent * elements remain in list order. */ void sort(); /** * @brief Sort the elements according to comparison function. * * Sorts the elements of this list in NlogN time. Equivalent * elements remain in list order. */ template<typename _StrictWeakOrdering> void sort(_StrictWeakOrdering); protected: // Internal constructor functions follow. // Called by the range constructor to implement [23.1.1]/9 // _GLIBCXX_RESOLVE_LIB_DEFECTS // 438. Ambiguity in the "do the right thing" clause template<typename _Integer> void _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type) { _M_fill_initialize(static_cast<size_type>(__n), __x); } // Called by the range constructor to implement [23.1.1]/9 template<typename _InputIterator> void _M_initialize_dispatch(_InputIterator __first, _InputIterator __last, __false_type) { for (; __first != __last; ++__first) push_back(*__first); } // Called by list(n,v,a), and the range constructor when it turns out // to be the same thing. void _M_fill_initialize(size_type __n, const value_type& __x) { for (; __n > 0; --__n) push_back(__x); } // Internal assign functions follow. // Called by the range assign to implement [23.1.1]/9 // _GLIBCXX_RESOLVE_LIB_DEFECTS // 438. Ambiguity in the "do the right thing" clause template<typename _Integer> void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) { _M_fill_assign(__n, __val); } // Called by the range assign to implement [23.1.1]/9 template<typename _InputIterator> void _M_assign_dispatch(_InputIterator __first, _InputIterator __last, __false_type); // Called by assign(n,t), and the range assign when it turns out // to be the same thing. void _M_fill_assign(size_type __n, const value_type& __val); // Moves the elements from [first,last) before position. void _M_transfer(iterator __position, iterator __first, iterator __last) { __position._M_node->transfer(__first._M_node, __last._M_node); } // Inserts new element at position given and with value given. #ifndef __GXX_EXPERIMENTAL_CXX0X__ void _M_insert(iterator __position, const value_type& __x) { _Node* __tmp = _M_create_node(__x); __tmp->hook(__position._M_node); } #else template<typename... _Args> void _M_insert(iterator __position, _Args&&... __args) { _Node* __tmp = _M_create_node(std::forward<_Args>(__args)...); __tmp->hook(__position._M_node); } #endif // Erases element at position given. void _M_erase(iterator __position) { __position._M_node->unhook(); _Node* __n = static_cast<_Node*>(__position._M_node); #ifdef __GXX_EXPERIMENTAL_CXX0X__ _M_get_Node_allocator().destroy(__n); #else _M_get_Tp_allocator().destroy(&__n->_M_data); #endif _M_put_node(__n); } // To implement the splice (and merge) bits of N1599. void _M_check_equal_allocators(list& __x) { if (std::__alloc_neq<typename _Base::_Node_alloc_type>:: _S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator())) __throw_runtime_error(__N("list::_M_check_equal_allocators")); } }; /** * @brief List equality comparison. * @param x A %list. * @param y A %list of the same type as @a x. * @return True iff the size and elements of the lists are equal. * * This is an equivalence relation. It is linear in the size of * the lists. Lists are considered equivalent if their sizes are * equal, and if corresponding elements compare equal. */ template<typename _Tp, typename _Alloc> inline bool operator==(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) { typedef typename list<_Tp, _Alloc>::const_iterator const_iterator; const_iterator __end1 = __x.end(); const_iterator __end2 = __y.end(); const_iterator __i1 = __x.begin(); const_iterator __i2 = __y.begin(); while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2) { ++__i1; ++__i2; } return __i1 == __end1 && __i2 == __end2; } /** * @brief List ordering relation. * @param x A %list. * @param y A %list of the same type as @a x. * @return True iff @a x is lexicographically less than @a y. * * This is a total ordering relation. It is linear in the size of the * lists. The elements must be comparable with @c <. * * See std::lexicographical_compare() for how the determination is made. */ template<typename _Tp, typename _Alloc> inline bool operator<(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) { return std::lexicographical_compare(__x.begin(), __x.end(), __y.begin(), __y.end()); } /// Based on operator== template<typename _Tp, typename _Alloc> inline bool operator!=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) { return !(__x == __y); } /// Based on operator< template<typename _Tp, typename _Alloc> inline bool operator>(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) { return __y < __x; } /// Based on operator< template<typename _Tp, typename _Alloc> inline bool operator<=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) { return !(__y < __x); } /// Based on operator< template<typename _Tp, typename _Alloc> inline bool operator>=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) { return !(__x < __y); } /// See std::list::swap(). template<typename _Tp, typename _Alloc> inline void swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y) { __x.swap(__y); } #ifdef __GXX_EXPERIMENTAL_CXX0X__ template<typename _Tp, typename _Alloc> inline void swap(list<_Tp, _Alloc>&& __x, list<_Tp, _Alloc>& __y) { __x.swap(__y); } template<typename _Tp, typename _Alloc> inline void swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>&& __y) { __x.swap(__y); } #endif _GLIBCXX_END_NESTED_NAMESPACE #endif /* _STL_LIST_H */