zoukankan      html  css  js  c++  java
  • bzoj3171 [Tjoi2013]循环格

    Description

    Input

    第一行两个整数 (R,C) 。表示行和列,接下来 (R) 行,每行 (C) 个字符LRUD,表示左右上下。

    Output

    一个整数,表示最少需要修改多少个元素使得给定的循环格完美

    Sample Input

    3 4
    RRRD
    URLL
    LRRR

    Sample Output

    2

    HINT

    (1le R,Lle 15)

    Solution

    费用流。

    显然,构成完美循环格的条件是每个格子入度出度都是 (1)

    考虑拆点,点 (x) 拆成 (x_1)(x_2) ,我们有 $$<S,x_1>:capacity=1;cost=0$$ $$<x_2,T>:capacity=1;cost=0$$

    (forall x, y) 四连通,有 $$<x_1,y_2>:capacity=1(其实这条边的流量对答案没有影响);cost=原图中x是否不指向y$$

    #include<bits/stdc++.h>
    using namespace std;
    
    #define N 500
    #define INF 2000000000
    #define rep(i, a, b) for (int i = a; i <= b; i++)
    
    const int dx[] = { 1, 0, -1, 0 }, dy[] = { 0, 1, 0, -1 };
    
    int n, m, a[N][N];
    char s[N][N];
    
    int S, T, flow, cost;
    struct edge { int u, v, c, w, next; }e[10001];
    int head[N], tot = 1;
    int dis[N], pre[N];
    queue<int> q;
    bool inq[N];
    
    inline void insert(int u, int v, int c, int w) { e[++tot].u = u, e[tot].v = v, e[tot].c = c, e[tot].w = w, e[tot].next = head[u], head[u] = tot; }
    inline void add(int u, int v, int c, int w) { insert(u, v, c, w), insert(v, u, 0, -w); }
    
    inline bool spfa() {
        rep(i, S, T) dis[i] = INF; dis[S] = 0; q.push(S);
        while (!q.empty()) {
            int u = q.front(); q.pop(); inq[u] = 0;
            for (int i = head[u], v, w; i; i = e[i].next) if (e[i].c > 0 && dis[v = e[i].v] > dis[u] + (w = e[i].w)) {
                dis[v] = dis[u] + w, pre[v] = i;
                if (!inq[v]) q.push(v); inq[v] = 1;
            }
        }
        return dis[T] != INF;
    }
    
    inline void mcf() {
        int d = INF;
        for (int i = T; i != S; i = e[pre[i]].u) d = min(d, e[pre[i]].c);
        flow += d;
        for (int i = T; i != S; i = e[pre[i]].u) e[pre[i]].c -= d, e[pre[i] ^ 1].c += d, cost += d * e[pre[i]].w;
    }
    
    int main() {
        cin >> n >> m; T = n * m * 2 + 1;
        rep(i, 1, n) scanf("%s", s[i] + 1);
        rep(i, 1, n) rep(j, 1, m) {
            if (s[i][j] == 'U') a[i][j] = 2;
            else if (s[i][j] == 'R') a[i][j] = 1;
            else if (s[i][j] == 'L') a[i][j] = 3;
        }
        rep(i, 1, n) rep(j, 1, m) {
            int x1 = (i - 1) * m + j, x2 = x1 + n * m;
            add(S, x1, 1, 0), add(x2, T, 1, 0);
            rep(k, 0, 3) {
                int ni = i + dx[k], nj = j + dy[k];
                if (ni < 1) ni = n; if (ni > n) ni = 1; if (nj < 1) nj = m; if (nj > m) nj = 1;
                int y1 = (ni - 1) * m + nj, y2 = y1 + n * m;
                add(x1, y2, 1, (int)(k != a[i][j]));
            }
        }
        while (spfa()) mcf(); cout << cost;
        return 0;
    }
    
  • 相关阅读:
    数据库中Schema(模式)概念的理解
    git错误处理
    mysql存储过程
    bunyan
    golang 小问题
    操作系统
    数据库优化
    内存控制
    MySQL优化2
    mysql优化1
  • 原文地址:https://www.cnblogs.com/aziint/p/8419767.html
Copyright © 2011-2022 走看看