zoukankan      html  css  js  c++  java
  • hdu3234 Exclusive-OR

    Description

    You are not given (n) non-negative integers (X_0, X_1, cdots, X_{n-1}) less than (2^{20}) , but they do exist, and their values never change.

    I'll gradually provide you some facts about them, and ask you some questions.

    There are two kinds of facts, plus one kind of question:

    Input

    There will be at most (10) test cases. Each case begins with two integers (n) and (Q (1 le n le 20000, 2 le Q le 40000)) . Each of the following lines contains either a fact or a question, formatted as stated above. The (k) parameter in the questions will be a positive integer not greater than (15) , and the (v) parameter in the facts will be a non-negative integer less than (2^{20}). The last case is followed by (n=Q=0) , which should not be processed.

    Output

    For each test case, print the case number on its own line, then the answers, one on each one. If you can't deduce the answer for a particular question, from the facts I provide you before that question, print "I don't know.", without quotes. If the (i)-th fact (don't count questions) cannot be consistent with all the facts before that, print "The first i facts are conflicting.", then keep silence for everything after that (including facts and questions). Print a blank line after the output of each test case.

    Sample

    Sample Input

    2 6
    I 0 1 3
    Q 1 0
    Q 2 1 0
    I 0 2
    Q 1 1
    Q 1 0
    3 3
    I 0 1 6
    I 0 2 2
    Q 2 1 2
    2 4
    I 0 1 7
    Q 2 0 1
    I 0 1 8
    Q 2 0 1
    0 0
    

    Sample Output

    Case 1:
    I don't know.
    3
    1
    2
    Case 2:
    4
    Case 3:
    7
    The first 2 facts are conflicting.
    

    Solution

    沉迷水题。

    带权并查集。

    #include<bits/stdc++.h>
    using namespace std;
    
    #define N 20001
    #define rep(i, a, b) for (int i = a; i <= b; i++)
    
    inline int read() {
    	int x = 0, flag = 1; char ch = getchar(); while (!isdigit(ch)) { if (!(ch ^ '-')) flag = -1; ch = getchar(); }
    	while (isdigit(ch)) x = (x << 1) + (x << 3) + ch - '0', ch = getchar(); return x * flag;
    }
    
    int n, Q, fa[N], num[N], val[N];
    
    int find(int x) {
    	if(x == fa[x]) return x;
    	int t = fa[x]; fa[x] = find(fa[x]), val[x] ^= val[t]; return fa[x];
    }
    
    bool merge(int u, int v, int x) {
    	int fu = find(u), fv = find(v); if(fu == fv) return (val[u] ^ val[v]) == x;
    	if(fu == n) swap(fu, fv); fa[fu] = fv, val[fu] = val[u] ^ val[v] ^ x; return 1;
    }
    
    int main() {
    	for (int T = 1; ; T++) {
    		n = read(), Q = read(); if (!n && !Q) break; printf("Case %d:
    ", T);
    		rep(i, 0, n) fa[i] = i, val[i] = 0;
    		int facts = 0; bool flag = 1; char op[2], str[20];
    		while (Q--) {
    			if (!flag) { gets(str); continue; }
    			scanf("%s", op);
    			if(op[0] == 'I') {
    				gets(str), facts++; int u, v, x;
    				if(sscanf(str, "%d%d%d", &u, &v, &x) == 2) x = v, v = n;
    				if(!merge(u, v, x)) printf("The first %d facts are conflicting.
    ", facts), flag = 0;
    			}
    			else {
    				int k = read(), x[20], ans = 0; bool tag = 1;
    				rep(i, 1, k) x[i] = read(), num[find(x[i])] = 0;
    				rep(i, 1, k) num[find(x[i])]++, ans ^= val[x[i]];
    				rep(i, 1, k) if(num[find(x[i])] % 2 == 1 && find(x[i]) != n) { tag = 0; break; }
    				if(!tag) puts("I don't know."); else printf("%d
    ", ans);
    			}
    		}
    	}
    	return 0;
    }
    
  • 相关阅读:
    表单序列化
    创建.ignore文件
    头条数学救火队长马丁的一道中山大学研究生入学考试数学分析题
    实数理论
    方法
    目标
    闭区间有限覆盖定理
    零值定理的确界原理证明方法,来自百度
    各种范例
    零值定理
  • 原文地址:https://www.cnblogs.com/aziint/p/8558453.html
Copyright © 2011-2022 走看看