zoukankan      html  css  js  c++  java
  • python的数字图像处理学习(3)

    高级滤波:

     1 from skimage import data,color,data_dir
     2 import matplotlib.pyplot as plt
     3 from skimage.morphology import disk
     4 import skimage.filters.rank as sfr
     5 img =color.rgb2gray(data.camera())
     6 auto =sfr.autolevel(img, disk(5))  #半径为5的圆形滤波器
     7 plt.figure('filters',figsize=(8,8))
     8 plt.subplot(121)
     9 plt.imshow(img,plt.cm.gray)
    10 plt.subplot(122)
    11 plt.imshow(auto,plt.cm.gray)
    12 data_dir

    高级滤波.....

     1 from skimage import data,color
     2 import matplotlib.pyplot as plt
     3 from skimage.morphology import disk
     4 import skimage.filters.rank as sfr
     5 img =color.rgb2gray(data.camera())
     6 auto =sfr.bottomhat(img, disk(5))  #半径为5的圆形滤波器
     7 auto1 =sfr.tophat(img, disk(5))  #半径为5的圆形滤波器
     8 plt.figure('filters',figsize=(12,12))
     9 plt.subplot(131)
    10 plt.imshow(img,plt.cm.gray)
    11 plt.subplot(132)
    12 plt.imshow(auto,plt.cm.gray)
    13 plt.subplot(133)
    14 plt.imshow(auto1,plt.cm.gray)

    提取轮廓....

     1 import numpy as np
     2 import matplotlib.pyplot as plt
     3 from skimage import measure,draw,data,filters
     4 #生成二值测试图像
     5 img=data.page()
     6 thresh = filters.threshold_isodata(img)
     7 img1 = (img <= thresh)*1.0   #根据阈值进行分割
     8 #检测所有图形的轮廓
     9 img2 = img1[:,:]
    10 contours = measure.find_contours(img1, 0.5)
    11 #绘制轮廓
    12 fig, (ax0,ax1,ax2) = plt.subplots(1,3,figsize=(15,15))
    13 ax0.imshow(img,plt.cm.gray)
    14 ax1.imshow(img1,plt.cm.gray)
    15 ax2.imshow(img2,plt.cm.gray)    #enumerate索引序列
    16 for n, contour in enumerate(contours):
    17     ax2.plot(contour[:, 1], contour[:, 0], linewidth=1)
    18 plt.show()

    提取轮廓..............

     1 import matplotlib.pyplot as plt
     2 from skimage import measure,data,color
     3 img=color.rgb2gray(data.horse())
     4 contours = measure.find_contours(img, 0.5)
     5 fig, axes = plt.subplots(1,2,figsize=(8,8))
     6 ax0, ax1= axes.ravel()
     7 ax0.imshow(img,plt.cm.gray)
     8 rows,cols=img.shape
     9 ax1.axis([0,rows,cols,0])
    10 for n, contour in enumerate(contours):
    11     ax1.plot(contour[:, 1], contour[:, 0], linewidth=1)
    12 ax1.axis('image')
    13 plt.show()

    凸包............

    import matplotlib.pyplot as plt
    from skimage import data,color,morphology
    img=color.rgb2gray(data.horse())
    img=(img<0.5)*1
    chull = morphology.convex_hull_image(img)
    fig, axes = plt.subplots(1,2,figsize=(8,8))
    ax0, ax1= axes.ravel()
    ax0.imshow(img,plt.cm.gray)
    ax1.imshow(chull,plt.cm.gray)

    多个凸包.....................................................................................

     1 import matplotlib.pyplot as plt
     2 from skimage import data,color,morphology,feature
     3 img=color.rgb2gray(data.coins())
     4 edgs=feature.canny(img, sigma=3, low_threshold=10, high_threshold=50) 
     5 chull = morphology.convex_hull_object(edgs)
     6 
     7 #绘制轮廓
     8 fig, axes = plt.subplots(1,2,figsize=(8,8))
     9 ax0, ax1= axes.ravel()
    10 ax0.imshow(edgs,plt.cm.gray)
    11 ax0.set_title('many objects')
    12 ax1.imshow(chull,plt.cm.gray)
    13 ax1.set_title('convex_hull image')
    14 plt.show()

     看不懂也写不下去了...

  • 相关阅读:
    巧用加密方法保障电子邮件系统安全 狼人:
    网管员注意:保障邮件安全的七条措施 狼人:
    全面剖析DNS 0DAY攻击、威胁以及防治 狼人:
    简述:电子邮件安全发展 狼人:
    IE漏洞致数百万用户中招 快用瑞星卡卡打补丁 狼人:
    警惕可执行文件:三类危险TXT类型文件 狼人:
    安全使用电子邮件十三法 狼人:
    提高IE和Email的安全性的四步骤 狼人:
    了解电子邮件加密 保证隐私内容安全 狼人:
    防不胜防 了解DNS缓存中毒攻击原理 狼人:
  • 原文地址:https://www.cnblogs.com/bai2018/p/10493548.html
Copyright © 2011-2022 走看看