package mapreduce; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; public class OneSort { public static class Map extends Mapper<Object , Text , IntWritable,Text >{ private static Text goods=new Text(); private static IntWritable num=new IntWritable(); public void map(Object key,Text value,Context context) throws IOException, InterruptedException{ String line=value.toString(); String arr[]=line.split(" "); num.set(Integer.parseInt(arr[1])); goods.set(arr[0]); context.write(num,goods); } } public static class Reduce extends Reducer< IntWritable, Text, IntWritable, Text>{ private static IntWritable result= new IntWritable(); public void reduce(IntWritable key,Iterable<Text> values,Context context) throws IOException, InterruptedException{ for(Text val:values){ context.write(key,val); } } } public static class IntWritableDecreasingComparator extends IntWritable.Comparator { public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) { return -super.compare(b1, s1, l1, b2, s2, l2); } } public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException{ Configuration conf=new Configuration(); Job job =new Job(conf,"OneSort"); job.setJarByClass(OneSort.class); job.setMapperClass(Map.class); job.setReducerClass(Reduce.class); job.setOutputKeyClass(IntWritable.class); job.setOutputValueClass(Text.class); job.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class); Path in=new Path("hdfs://192.168.43.114:9000/mymapreduce3/in/one"); Path out=new Path("hdfs://192.168.43.114:9000/mymapreduce3/out"); FileInputFormat.addInputPath(job,in); FileOutputFormat.setOutputPath(job,out); job.setSortComparatorClass(IntWritableDecreasingComparator.class); System.exit(job.waitForCompletion(true) ? 0 : 1); } } 利用mapreduce的wordcount程序进行id的计算,相同id合并并计数,之后 将输出的文件根据次数降序, 因为mapreduce的排序是是默认升序排序,所以需要写排序类重写降序类,最后将输出结果存到hive与mysql中。
今天进行的课堂测试我完成了数据的清洗,并把数据也成功导入到了hive数据库中,这次有一个很大的不足,就是没有在课前将hive配置好,所以用了很长的时间去配置,以后一定会吸取教训,提前做好准备工作。