zoukankan      html  css  js  c++  java
  • 阈值分割算子之OSTU算法

    1、原理参考:https://www.cnblogs.com/guopengfei/p/4759569.html

    2、公式推导:

          

    3、同halcon的binary_threshold (Image, Region, 'max_separability', 'light', UsedThreshold3)算子。

        具体实现如下:

    gray_histo (Region, Image, AbsoluteHisto, RelativeHisto)
    get_image_size (Image, Width, Height)
    TotalSize:=Width*Height
    intensity (Region, Image, avgValue, Deviation)//avgValue图像总平均灰度
    MaxDiff:=0.0
    Diff:=0.0 //方差
    Thre:=0
    delta_max:=0
    for i := 0 to 255 by 1
        w0:=0.0
        u0:=0.0
        w1:=0.0
        u1:=0.0
        uo_temp:=0
        u1_temp:=0
        delta_temp:=0
        **背景部分
        for j:=0 to i by 1      
            w0:=w0+AbsoluteHisto[j]
            uo_temp:=uo_temp+j*AbsoluteHisto[j]
        endfor
        **前景部分
        w1:=TotalSize-w0
        u1_temp:=avgValue*TotalSize-uo_temp
        **计算两类的平均灰度
        if(w0==0 or w1==0)
            u0:=0
            u1:=0
        else
            u0:=uo_temp/w0   
            u1:=u1_temp/w1 
        endif 
        **依次找到最大类间方差下的阈值
        delta_temp:=w0*w1*pow((u0-u1),2)
        if(delta_temp>delta_max)
            delta_max := delta_temp
            Thre:=i
        endif  
    endfor
    return ()
    

    优化后的代码实现如下:

    gray_histo (Region, Image, AbsoluteHisto, RelativeHisto)
    intensity (Region, Image, avgValue, Deviation)//avgValue图像总平均灰度
    wk:=0.0 //分开后前景像素点数占图像的比例
    uk:=0.0 //分开后前景像素数的平均灰度值
    MaxDiff:=0.0
    Diff:=0.0 //方差
    Thre:=0
    for Index := 0 to 255 by 1
        wk:=wk+RelativeHisto[Index]
        uk:=uk+RelativeHisto[Index]*Index
        if(wk<=0.0 or wk>=1.0)
            Diff:=0
        else
            Diff:=(avgValue*wk-uk)*(avgValue*wk-uk )/(wk*(1-wk))
        endif
        if(Diff>MaxDiff)
            MaxDiff:=Diff
            Thre:=Index
        endif
    endfor
    return ()

      

  • 相关阅读:
    Rpc简单入门
    对话Task
    对话线程
    译MassTransit 生产消息
    MassTransit 实现应用程序间交互
    译MassTransit 消息契约
    轻松理解AOP思想(面向切面编程)
    Elasticsearch 全教程
    Elasticsearch 教程--搜索
    Elasticsearch 教程--数据
  • 原文地址:https://www.cnblogs.com/baiyy-daheng/p/11421537.html
Copyright © 2011-2022 走看看