zoukankan      html  css  js  c++  java
  • Kafka的简单介绍_基础知识和应用场景介绍一下,一篇入门的文章

    1.kafka介绍

    关于kafka入门的文章最好的就莫过于kafka的官方文档了,这上面对kafka的定义是:

    Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.

    kafka是一个分布式的,可分区的,可备份的日志提交服务,它使用独特的设计实现了一个消息系统的功能。

    到底kafka使用什么独特的设计可以让它在消息处理领域独占鳌头呢?这就涉及到kafka的内部机制,这些我会在后续的文章中向大家慢慢介绍,这里先介绍一下kafka集群的基本结构和kafka的一些专业术语。

    1.1.kafka集群的基本架构

    一个典型的kafka集群架构如下图所示:

    kafkakafka

    kafka集群常用的场景就是,producer把日志信息推送(push)到broker节点上,然后consumer(可以是写入到hdfs或者其他的一些应用)再从broker拉取(pull)信息。kafka的push&pull机制如下图所示,具体的这样设计的原因我会在后续的文章中进行介绍。

    pullpull

    作为一个message system,kafka遵循了传统的方式,选择由kafka的producer向broker push信息,而consumer从broker pull信息。kafka的consumer之所以没有采用push模式,主要是因为push模式很难适应速率不同的consumer,因为消息发送速率是由broker决定的。push模式的目标就是尽可能以最快速度传递消息,但是这样很容易造成consumer来不及处理消息,典型的表现就是拒绝服务以及网络拥塞,而pull模式则可以根据consumer的消费能力以适当的速率消费message。

    1.2.专业术语

    kafka使用的一些主要的专业术语:

    • Topic:特指Kafka处理的消息源的不同分类,其实也可以理解为对不同消息源的区分的一个标识;
    • Partition:Topic物理上的分组,一个topic可以设置为多个partition,每个partition都是一个有序的队列,partition中的每条消息都会被分配一个有序的id(offset);
    • Message:消息,是通信的基本单位,每个producer可以向一个topic(主题)发送一些消息;
    • Producers:消息和数据生产者,向Kafka的一个topic发送消息的过程叫做producers(producer可以选择向topic哪一个partition发送数据)。
    • Consumers:消息和数据消费者,接收topics并处理其发布的消息的过程叫做consumer,同一个topic的数据可以被多个consumer接收;
    • Broker:缓存代理,Kafka集群中的一台或多台服务器统称为broker。

    理解了上述概念之后,再来看kafka就容易了。

    1.3.kafka的应用场景

    Kafka主要用于处理流式数据。流式数据在web网站应用中非常常见,这些数据包括网站的pv、用户访问了什么内容,搜索了什么内容等。这些数据通常以日志的形式记录下来,然后每隔一段时间进行一次统计处理。Kafka的作用类似于缓存,能够很好地处理实时和离线应用。

    2.概念详解

    2.1.topic

    正如前面介绍的,topic是kafka发送消息的一个标识,一般以目录的形式存在,对于一个有三个partition的topic而言,它日志信息结构大概如下图所示:

    loglog

    每一个partition实际上都是一个有序的,不可变的消息序列,producer发送到broker的消息会写入到相应的partition目录下,每个partition都会有一个有序的id(offset),这个offset确定这个消息在partition中的具体位置。

    举一个例子,我们在一个kafka集群中建立的名为wangzzu,partition数为3的topic,kafka就会在broker的/tmp/kafka-logs(目录可以修改,可参考我kafka集群安装与配置)新建三个目录,这里我们直接指定将三个partition建立在同一个broker上,如下图所示:

    topictopic

    当启动producer程序时,就会向kafka集群发送信息,而kafka就会把中间信息存储在这三个目录下,具体的发送方式和消息存储结构会在以后的文章中介绍。

    2.2.producer

    producer这部分相比较而言,是比较简单的,就是把消息发送给它所选择的topic,也可以具体指定发给这个topic的哪个一个partition,否则producer就会使用hashing-based partitioner来决定发送到哪个partition,这个问题还是需要多说一些,之前我在测试kafka速度的时候就遇到了这个问题,当我们增加broker的数量时,kafka的发送速度并没有线性增加,最后发现就是因为这个原因,没有指明发送数据到哪个partition,具体的解释我就引用官网WIKI中给出回答:

    In Kafka producer, a partition key can be specified to indicate the destination partition of the message. By default, a hashing-based partitioner is used to determine the partition id given the key, and people can use customized partitioners also.
    To reduce # of open sockets, in 0.8.0(High number of open file handles in 0.8 producer), when the partitioning key is not specified or null, a producer will pick a random partition and stick to it for some time (default is 10 mins) before switching to another one. So, if there are fewer producers than partitions, at a given point of time, some partitions may not receive any data. To alleviate this problem, one can either reduce the metadata refresh interval or specify a message key and a customized random partitioner. For more detail see this thread

    2.3.consumer

    这里的consumer部分,主要是以High Level Consumer API为例。

    consumer是一个抽象的概念,调用Consumer API的程序都可以称作为一个consumer,它从broker端订阅某个topic的消息。如果只有一个consumer的话,该topic(可能含有多个partition)下所有消息都会被这个consumer接收。但是在分布式的环境中,我们可能会遇到这样一种情景,对于一个有多个partition的topic,我们希望启动多个consumer去消费这些partition(如果发送速度较快,一个consumer是无法消费完的),并且要求topic的一条消息只能发给其中一个consumer,不希望这些conusmer出现重复接收一条消息的情况。对于这种情况,我们应该怎么办呢?kafka给我们提供了一种机制,可以很好来适应这种情况,那就是consumer group(当然也可以应用在第一种情况,实际上,如果只有一个consumer时,是不需要指定consumer group,这时kafka会自动给这个consumer生成一个group名)。

    在调用conusmer API时,一般都会指定一个consumer group,该group订阅的topic的每一条消息都发送到这个group的某一台机器上。借用官网一张图来详细介绍一下这种情况,假如kafka集群有两台broker,集群上有一个topic,它有4个partition,partition 0和1在broker1上,partition 2和3在broker2上,这时有两个consumer group同时订阅这个topic,其中一个group有2个consumer,另一个consumer有4个consumer,则它们的订阅消息情况如下图所示:

    consumerGroupconsumerGroup

    因为group A只有两个consumer,所以一个consumer会消费两个partition;而group B有4个consumer,一个consumer会去消费一个partition。这里要注意的是,kafka可以保证一个partition内的数据是有序的,所以group B中的consumer收到的数据是可以保证有序的,但是Group A中的consumer就无法保证了。

    group读取topic,partition分配机制是:

    • 如果group中的consumer数小于topic中的partition数,那么group中的consumer就会消费多个partition;
    • 如果group中的consumer数等于topic中的partition数,那么group中的一个consumer就会消费topic中的一个partition;
    • 如果group中的consumer数大于topic中的partition数,那么group中就会有一部分的consumer处于空闲状态。

    3.kafka的简单使用

    这部分是利用kafka自带的kafka-console-producer.shkafka-console-consumer.sh来发送和接收消息,而具体如何调用 kafka API使用kafka会在后续的文章中介绍。

    首先要启动kafka和建立topic,可参考Kafka常用的一些命令

    1
    nohup bin/kafka-server-start.sh config/server.properties & #启动kafka,并且使用nohup将日志输出到当前目录的nohup.out中,使用&后台运行

    topic还接着使用wangzzu(建立topic命令参考2.1中的图片),下面开启kafka-console-producer.sh并发送几条消息

    producerproducer

    然后,启动kafka-console-consumer.sh就可以收到我们发送的这几条消息

    consumerconsumer

    这个就是kafka的最简单的使用情况了。

    希望这篇文章对初学者能有所帮助(转载:http://matt33.com/2015/11/14/The-Introduce-of-Kafka/)。

  • 相关阅读:
    Windows10打印mumu模拟器日志
    简析快速排序
    数字转换为W,K,结尾,并可指定长度(仅供参考,个人测试使用。)
    简析选择排序
    简析冒泡排序
    NX二次开发 工程图创建孔表功能
    NX二次开发 建模座标和工程图座标映射
    NXOpen绝对座标值转为WCS座标值
    NX二次开发 结合包容盒快速创建WCS
    NX二次开发 数值转NXString字符
  • 原文地址:https://www.cnblogs.com/balabalala/p/8891429.html
Copyright © 2011-2022 走看看