(一)Highway Networks 与 Deep Networks 的关系##
- 理论实践表明神经网络的深度是至关重要的,深层神经网络在很多方面都已经取得了很好的效果,例如,在1000-class ImageNet数据集上的图像分类任务通过利用深层神经网络把准确率从84%提高到了95%,然而,在训练深层神经网络的时候却是非常困难的,神经网络的层数越多,存在的问题也就越多(例如大家熟知的梯度消失、梯度爆炸问题,下文会详细讲解)、训练起来也就是愈加困难,这是一个公认的难题。
- 2015年由Rupesh Kumar Srivastava等人提出的新的网络结构(Highway Networks)很好的解决了这一个问题,Highway Networks 允许信息“高速无阻碍”的通过各个神经层,这就不会出现深层网络中出现的信息阻碍的问题。在此之前,深层神经网络的深度仅仅能够达到几层或者是十几层,但是Highway Networks可以训练数十层甚至上百层的神经网络(前提是硬件设置可以支持这种大量的运算)。
(二)Deep Networks 梯度消失/爆炸(vanishing and exploding gradient)问题##
1、什么是梯度消失/爆炸?
在反向传播的过程中,前面层的权重正常学习更新,而接近后面的层权重基本上不更新,导致后面的层基本上学习不到任何的东西,也就是说后面的层只是相当于对输入做了一个映射,那么这样的深层神经网络也就仅仅相当于浅层的神经网络了。
2、梯度消失/爆炸
我们先来看一下简单的深层神经网络(仅仅几个隐藏层)
先把各个层的公式写出来
C=sigmoid(W_4*H_3 +b_4)
H_3=sigmoid(W_3*H_2 +b_3)
H_2=sigmoid(W_2*H_1 +b_2)
H_1=sigmoid(W_1*x +b_1)
对W_1求导
W=W - lr * g(t)
以上公式仅仅是四个隐藏层的情况,当隐藏层的数量达到数十层甚至是数百层的情况下,一个一个的反向传播回去,当权值 < 1的时候,传到最后一层近乎0,例如,〖0.9〗^100已经是很小很小了,这就造成了只有前面几层能够正常的反向传播,后面的那些隐藏层仅仅相当于输入x的权重的映射,权重不进行更新。反过来,当权值 > 1的时候,会造成梯度爆炸,同样是仅仅前面的几层能更改正常学习,后面的隐藏层会变得很大很大。
References
Notation
**欢迎转载、转载请注明出处。http://www.cnblogs.com/bamtercelboo/p/7581353.html **