zoukankan      html  css  js  c++  java
  • 麻省理工算法导论学习笔记(2)渐近符号、递归及解法

      这节课,大概讲了一些符号的用法,毕竟偏数学化,没有涉及算法的知识。我也参考了下别人的笔记,本节课内容不是太多,主要是符号表示和递归的复杂度求解方式,下面分2个部分讲解。

      一,渐进符号

      (1)O符号f(n) = O(g(n)),表示f(n)的复杂度最多与g(n)一个数量级,即小于等于。

      (2)Ω符号,f(n) = Ω(g(n)),f(n)的复杂度最少与g(n)一个数量级,即大于等于。

      (3)o符号,f(n) = o(g(n)),表示f(n)的复杂度要比g(n)的数量级小,即小于。

      (4)ω符号,f(n) = ω(g(n)),表示f(n)的复杂度要比g(n)的数量级大,即大于。

      (5)Θ符号,(n) = Θ(g(n)),表示f(n)的复杂度既大于等于g(n)的复杂度,又小于等于g(n)的复杂度,即于g(n)的复杂度相当。

      二,三种方式来解递归式

      算法设计中经常会用到递归,利用递归式的方法可以清晰地显示算法的整个过程,而对于分析算法的复杂度,解递归式就有了用处。

      (1)代换法。

       分为三个步骤:a)凭感觉猜,不用关系系数和常数,猜测可能的形式。b)通过数学归纳法验证第一步才出来的form是否满足条件。c)确定系数和常数。缺点是并不严格。

      (2)递归树。

      上一节归并排序的时候有用到过这个方法。

        

      (3)主定理。(只对特等的递归式有效,包含三种情况

      主定理通常解决如下的递归表达式:递归式描述的是将规模为n的问题划分为a个子问题,并且每个子问题的规模是n/b,这里a和b是正常数。划分原问题和合并结果的代价有函数f(n)描述。

      

      

      

      

    现在是不是很累了?休息一下,清凉一夏。

      

  • 相关阅读:
    每天拿出来2小时浪费(文/王路) 作者: 王路
    objective-c自学总结(二)---init/set/get方法
    objective-c自学总结(一)---面向对象
    水仙花数
    独木舟上的旅行
    阶乘之和
    小明的调查统计
    管闲事的小明
    重温《STL源码剖析》笔记 第一章
    重温《STL源码剖析》笔记 第三章
  • 原文地址:https://www.cnblogs.com/banli/p/3089900.html
Copyright © 2011-2022 走看看