上一篇博客中爬取到了10个类别中数据并以文本的形式存取。
第二步便考虑对获得的文本进行分词操作~
开发环境:
anaconda3;
jieba分词;(在anaconda中pip install jieba 命令成功下载并安装jieba包(conda和pip是两个不同的包管理器,那个jieba没在conda中,应该用pip进行安装)
上代码
# -*- coding: utf-8 -*- """ Created on Thu Mar 8 10:26:40 2018 @author: Administrator """ # 2017年7月4日00:13:40 # silei # jieba分词,停用词,数据可视化,知识图谱 # 数据文件数一共1170个 # baby,car,food,health,legend,life,love,news,science,sexual # 130,130,130,130,130,130,130,130,130,130 # -*- coding:UTF-8 -*- import jieba dir = {'baby': 130,'car': 130,'food': 130,'health': 130,'legend': 130,'life': 130,'love': 130,'news': 130,'science': 130,'sexual': 39}# 设置词典,分别是类别名称和该类别下一共包含的文本数量 data_file_number = 0# 当前处理文件索引数 for world_data_name,world_data_number in dir.items():# 将词典中的数据分别复制到world_data_name,world_data_number中 while (data_file_number < world_data_number): print(world_data_name) print(world_data_number) print(data_file_number)# 打印文件索引信息 file = open('F:\test\'+world_data_name+'\'+str(data_file_number)+'.txt','r',encoding= 'UTF-8') file_w = open('F:\test\trainTest\'+world_data_name+'\'+str(data_file_number)+'.txt','w',encoding= 'UTF-8') for line in file: stoplist = {}.fromkeys([ line.strip() for line in open("F:\test\stopword.txt",encoding= 'UTF-8') ]) # 读取停用词在列表中 seg_list = jieba.lcut(line,cut_all=False)# jieba分词精确模式 seg_list = [word for word in list(seg_list) if word not in stoplist] # 去除停用词 print("Default Mode:", "/ ".join(seg_list)) for i in range(len(seg_list)): file_w.write(str(seg_list[i])+' ')# 分完词分行输入到文本中 # file_w.write(str(seg_list)) # print(line, end='') file_w.close() file.close() data_file_number = data_file_number + 1 data_file_number = 0
运行完代码便可获得分词完的文本,分词操作完成!