zoukankan      html  css  js  c++  java
  • 【原创】大数据基础之Spark(9)spark部署方式yarn/mesos

    1 下载解压 https://spark.apache.org/downloads.html

    $ wget http://mirrors.shu.edu.cn/apache/spark/spark-2.4.0/spark-2.4.0-bin-hadoop2.7.tgz

    $ tar xvf spark-2.4.0-bin-hadoop2.7.tgz
    $ cd spark-2.4.0-bin-hadoop2.7

    2 配置环境变量SPARK_HOME

    $ export SPARK_HOME=/path/to/spark-2.4.0-bin-hadoop2.7

    3 启动

    以spark-sql为例

    3.1 spark on yarn

    3.1.1 环境

    只需要配置环境变量 HADOOP_CONF_DIR

    3.1.2 启动

    $ bin/spark-sql --master yarn

    更多参数

    --deploy-mode cluster
    --driver-memory 4g
    --driver-cores 1
    --executor-memory 2g
    --executor-cores 1
    --num-executors 1
    --queue thequeue

    注意:spark on yarn 有可能启动报错

    19/02/25 17:54:20 ERROR cluster.YarnClientSchedulerBackend: Yarn application has already exited with state FINISHED!

    查看nodemanager日志发现原因

    2019-02-25 17:54:19,481 WARN org.apache.hadoop.yarn.server.nodemanager.containermanager.monitor.ContainersMonitorImpl: Container [pid=48342,containerID=container_1551078668160_0012_02_000001] is running beyond virtual memory limits. Current usage: 380.9 MB of 1 GB physical memory used; 2.5 GB of 2.1 GB virtual memory used. Killing container.

    需要调整yarn-site.xml配置

        <property>

            <name>yarn.nodemanager.vmem-check-enabled</name>

            <value>false</value>

        </property>

     or

        <property>

            <name>yarn.nodemanager.vmem-pmem-ratio</name>

            <value>4</value>

        </property>

    3.1.3 日志

    查看日志

    # yarn logs -applicationId=$application_id

    本地日志目录:/var/log/hadoop-yarn/userlogs/$application_id

    3.1.4 stop

    # yarn application -kill $application_id

    停止yarn上运行的application

    3.2 spark on mesos

    3.2.1 环境

    配置环境变量

    export MESOS_NATIVE_JAVA_LIBRARY=/usr/local/lib/libmesos.so

    配置spark包或目录,二选一

    1)方式一

    export SPARK_EXECUTOR_URI=<URL of spark-2.4.3.tar.gz uploaded above>

    or

    --conf spark.executor.uri=<URL of spark-2.4.3.tar.gz uploaded above>

    2)方式二

    --conf spark.mesos.executor.home=/path/to/spark/home

    说明:

    To use Mesos from Spark, you need a Spark binary package available in a place accessible by Mesos, and a Spark driver program configured to connect to Mesos.

    Alternatively, you can also install Spark in the same location in all the Mesos slaves, and configure spark.mesos.executor.home (defaults to SPARK_HOME) to point to that location.

    3.2.2 deploy-mode

    3.2.2.1 client方式

    启动

    $ bin/spark-sql --master mesos://zk://192.168.0.1:2181,192.168.0.2:2181/mesos

    其中master参数两者选其一

    --master mesos://zk://192.168.0.1:2181/mesos
    --master mesos://192.168.0.1:5050

    更多参数

    --supervise
    --executor-memory 20G
    --conf spark.executor.cores=1
    --conf spark.cores.max=100

    注意此时没有--num-executors参数(yarn),也不能用--executor-cores,间接配置方法如下:

    Executor memory: spark.executor.memory
    Executor cores: spark.executor.cores
    Number of executors: spark.cores.max/spark.executor.cores

    3.2.2.2 cluster方式

    To use cluster mode, you must start the MesosClusterDispatcher in your cluster via the sbin/start-mesos-dispatcher.sh script, passing in the Mesos master URL (e.g: mesos://host:5050). This starts the MesosClusterDispatcher as a daemon running on the host. Note that the MesosClusterDispatcher does not support authentication. You should ensure that all network access to it is protected (port 7077 by default).

    启动mesos dispatcher

    $SPARK_HOME/sbin/start-mesos-dispatcher.sh --master mesos://zk://192.168.0.1:2181/mesos

    修改master

    --master mesos://192.168.0.1:7077

    增加conf参数

    --conf spark.master.rest.enabled=true

    如果不加上述conf直接使用cluster方式提交任务会报错:

    Exception in thread "main" java.lang.AssertionError: assertion failed: Mesos cluster mode is only supported through the REST submission API
            at scala.Predef$.assert(Predef.scala:170)
            at org.apache.spark.deploy.SparkSubmit.prepareSubmitEnvironment(SparkSubmit.scala:673)
            at org.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:143)
            at org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:86)
            at org.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.scala:924)
            at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:933)
            at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

    相关代码如下:

    org.apache.spark.deploy.SparkSubmit

        // In standalone cluster mode, there are two submission gateways:
        //   (1) The traditional RPC gateway using o.a.s.deploy.Client as a wrapper
        //   (2) The new REST-based gateway introduced in Spark 1.3
        // The latter is the default behavior as of Spark 1.3, but Spark submit will fail over
        // to use the legacy gateway if the master endpoint turns out to be not a REST server.
        if (args.isStandaloneCluster && args.useRest) {
          try {
            logInfo("Running Spark using the REST application submission protocol.")
            doRunMain()
          } catch {
            // Fail over to use the legacy submission gateway
            case e: SubmitRestConnectionException =>
              logWarning(s"Master endpoint ${args.master} was not a REST server. " +
                "Falling back to legacy submission gateway instead.")
              args.useRest = false
              submit(args, false)
          }
        // In all other modes, just run the main class as prepared
        } else {
          doRunMain()
        }
      }

    其中useRest来自这里:

    org.apache.spark.deploy.SparkSubmitArguments

      useRest = sparkProperties.getOrElse("spark.master.rest.enabled", "false").toBoolean

    最后要保证jar包可以通过http或hdfs访问

    Note that jars or python files that are passed to spark-submit should be URIs reachable by Mesos slaves, as the Spark driver doesn’t automatically upload local jars.

    其中mesos dispatcher为单点,不支持ha,支持在marathon上运行;

    3.2.3 日志

    本地日志目录:/var/lib/mesos/slaves

    示例:

    # ls -l /var/lib/mesos/slaves/cbe75da3-d16c-43b0-8949-f77cd2be2591-S0/frameworks/2a0fb98b-f8df-44e8-965c-54ad7203fa45-0010/executors/driver-20190614142804-0001/runs/3e59a486-a219-4f63-a41e-12fb064a597d/
    total 2460364
    drwxr-xr-x 66 root root       4096 Jun 14 14:30 blockmgr-831b7a79-3224-479d-a927-b9024540749d
    drwx------  3 root root       4096 Jun 14 14:28 spark-e5468d46-51be-478b-8968-fb0700953ea8
    -rw-r--r--  1 root root 2512477348 Jun 18 14:03 stderr
    -rw-r--r--  1 root root    6720547 Jun 18 14:03 stdout

    3.2.4 stop

    # curl http://localhost:5050/master/teardown -H 'Content-Type: application/json' -d "frameworkId=2a0fb98b-f8df-44e8-965c-54ad7203fa45-0010" -v

    停止mesos上运行的framework/task

    参考:http://spark.apache.org/docs/latest/running-on-mesos.html

  • 相关阅读:
    查找和排序-6.快速排序
    查找和排序-5.插入排序
    PAT (Basic Level) Practice (中文)1093、1094
    srand((unsigned)time(NULL))详解
    fscanf()库函数
    C++ fopen函数用法
    简单计数排序
    数据结构:堆排序
    数据结构:归并排序
    团体程序设计天梯赛-练习集(八)(DFS,7-37 整数分解为若干项之和、7-22 龟兔赛跑)
  • 原文地址:https://www.cnblogs.com/barneywill/p/10432581.html
Copyright © 2011-2022 走看看