zoukankan      html  css  js  c++  java
  • 【原创】大数据基础之Benchmark(1)HiBench

    HiBench 7
    官方:https://github.com/intel-hadoop/HiBench

    一 简介

    HiBench is a big data benchmark suite that helps evaluate different big data frameworks in terms of speed, throughput and system resource utilizations. It contains a set of Hadoop, Spark and streaming workloads, including Sort, WordCount, TeraSort, Sleep, SQL, PageRank, Nutch indexing, Bayes, Kmeans, NWeight and enhanced DFSIO, etc. It also contains several streaming workloads for Spark Streaming, Flink, Storm and Gearpump.

    There are totally 19 workloads in HiBench.

    Supported Hadoop/Spark/Flink/Storm/Gearpump releases:

    Hadoop: Apache Hadoop 2.x, CDH5, HDP
    Spark: Spark 1.6.x, Spark 2.0.x, Spark 2.1.x, Spark 2.2.x
    Flink: 1.0.3
    Storm: 1.0.1
    Gearpump: 0.8.1
    Kafka: 0.8.2.2

    二 spark sql测试

    1 download

    $ wget https://github.com/intel-hadoop/HiBench/archive/HiBench-7.0.tar.gz
    $ tar xvf HiBench-7.0.tar.gz
    $ cd HiBench-HiBench-7.0

    2 build

    1)build all

    $ mvn -Dspark=2.1 -Dscala=2.11 clean package

    2)build hadoopbench and sparkbench

    $ mvn -Phadoopbench -Psparkbench -Dspark=2.1 -Dscala=2.11 clean package

    3)only build spark sql

    $ mvn -Psparkbench -Dmodules -Psql -Dspark=2.1 -Dscala=2.11 clean package

    3 prepare

    $ cp conf/hadoop.conf.template conf/hadoop.conf
    $ vi conf/hadoop.conf

    $ cp conf/spark.conf.template conf/spark.conf
    $ vi conf/spark.conf

    $ vi conf/hibench.conf
    # Data scale profile. Available value is tiny, small, large, huge, gigantic and bigdata.
    # The definition of these profiles can be found in the workload's conf file i.e. conf/workloads/micro/wordcount.conf
    hibench.scale.profile bigdata

    4 run

    sql测试分为3种:scan/aggregation/join

    $ bin/workloads/sql/scan/prepare/prepare.sh
    $ bin/workloads/sql/scan/spark/run.sh

    具体配置位于conf/workloads/sql/scan.conf
    prepare之后会在hdfs的/HiBench/Scan/Input下生成测试数据,在report/scan/prepare/下生成报告
    run之后会在report/scan/spark/下生成报告,比如monitor.html,在hive的default库下可以看到测试数据表

    $ bin/workloads/sql/join/prepare/prepare.sh
    $ bin/workloads/sql/join/spark/run.sh

    $ bin/workloads/sql/aggregation/prepare/prepare.sh
    $ bin/workloads/sql/aggregation/spark/run.sh

    依此类推

    如果prepare时报错内存溢出

    尝试修改

    $ vi bin/functions/workload_functions.sh
    local CMD="${HADOOP_EXECUTABLE} --config ${HADOOP_CONF_DIR} jar $job_jar $job_name $tail_arguments"

    格式:hadoop jar <jarName> <youClassName> -D mapreduce.reduce.memory.mb=5120 -D mapreduce.reduce.java.opts=-Xmx4608m <otherArgs>

    发现不能生效,尝试增加map数量

    $ vi bin/functions/hibench_prop_env_mapping.py:
    NUM_MAPS="hibench.default.map.parallelism",

    $ vi conf/hibench.conf
    hibench.default.map.parallelism 5000

    参考:
    https://github.com/intel-hadoop/HiBench/blob/master/docs/build-hibench.md
    https://github.com/intel-hadoop/HiBench/blob/master/docs/run-sparkbench.md

  • 相关阅读:
    游戏开发制作流程详细介绍
    成为群体领袖
    别人的,值得借鉴的经验
    linux下iptabes配置详解
    Oracle tnsnames.ora
    同时展多个物料BOM List
    Oracle判断是否为数字或数字型字符串
    linux上的vnc配置
    Oracle 中的正则函数
    如何将 backordered 的SO# 重新发运?
  • 原文地址:https://www.cnblogs.com/barneywill/p/10436299.html
Copyright © 2011-2022 走看看