zoukankan      html  css  js  c++  java
  • pytorch学习问题汇总

    问题六:

    问题五:这里是怎么得到的?

    问题四:为什么会是如下结果?

    torch.bernoulli(a)怎么是这个结果?

    问题1:torch各个类型数据格式如何转换?数据类型在官方文档torch.Tensor中,有八种类型。

    #尝试一
    i32=torch.IntTensor([1,2,3])
    i64=torch.LongTensor([1,2,3])
    #两种转换都报错
    #new_i64=torch.IntTensor(i64)
    #new_i32=torch.LongTensor(i32)
    #didn't match because some of the arguments have invalid types: (!torch.LongTensor!)
    
    #尝试二
    new_i32=i32.long()
    print(torch.equal(new_i32,i64))  #True
    #torch.Tensor对应八种数据转换,各种数据可以相互转换
    i32.float()
    i32.double()
    i32.half()
    i32.byte()
    i32.char()
    i32.short()
    i32.int()
    i32.long()

    问题2:官方文档中sequence of tensors是什么意思?在torch.stack(sequencedim=0out=None).

     是tensors构成的序列,可以为列表,也可以为元组

    #torch.stack(sequence, dim=0, out=None) 连接Tensors
    i32=torch.Tensor([1,2,3])
    print(torch.stack([i32,i32,i32]))  #默认dim=0,以列为基准
    #  1  2  3
    #  1  2  3
    #  1  2  3
    # [torch.FloatTensor of size 3x3]
    print(torch.stack([i32,i32,i32],dim=1))
    #  1  1  1
    #  2  2  2
    #  3  3  3
    # [torch.FloatTensor of size 3x3]
    print(torch.stack((i32,i32,i32),dim=1))
    #  1  1  1
    #  2  2  2
    #  3  3  3
    # [torch.FloatTensor of size 3x3]

    问题3:为什么有如下Tensor格式区别?有的是size 3,有的是size 4x1 ?

    torch.from_numpy(np.array([1,2,3]))   #torch.IntTensor of size 3
    torch.from_numpy(np.array([1.0,2,3])) #torch.DoubleTensor of size 3
    torch.nonzero(torch.Tensor([1,2,3,0,4]))==torch.Tensor([0,1,2,4])  #nonzero  非0元素所在位置
    # TypeError: eq received an invalid combination of arguments - got (torch.FloatTensor), but expected one of:
    #  * (int value)
    #       didn't match because some of the arguments have invalid types: (!torch.FloatTensor!)
    #  * (torch.LongTensor other)
    #       didn't match because some of the arguments have invalid types: (!torch.FloatTensor!)
    #注意上面代码中两者数据格式类型不一致,torch.FloatTensor   torch.LongTensor
    #torch.unsqueeze(input,dim,out=None)
    m=torch.Tensor([1,2,3,4])
    print(m)                     #torch.FloatTensor of size 4
    m_zero=torch.unsqueeze(m,0)
    print(m_zero)                #torch.FloatTensor of size 1x4
    m_one=torch.unsqueeze(m,1)
    print(m_one)                 #torch.FloatTensor of size 4x1
    
    m_zero_to_m=torch.squeeze(m_zero)
    print(m_zero_to_m)           #torch.FloatTensor of size 4
    print(m==m_zero_to_m)        #torch.ByteTensor of size 4
    # 1
    # 1
    # 1
    # 1
    print(m.equal(m_zero_to_m))  True

    可见为两种不同数据类型,可以通过unsqueeze和squeeze来相互转化。判断两个Tensor是否相等,用equal

    问题4、

  • 相关阅读:
    OpenCV数字图像处理学习笔记整理
    SSM框架整合
    Spring MVC 拦截器
    SpringMVC的JSON数据交互和RESTful支持
    Spring MVC数据绑定
    Spring MVC 入门
    Spring 与 Mybatis整合
    MyBatis的关联映射
    iview table中的render函数使用
    iview+vue查询分页实现
  • 原文地址:https://www.cnblogs.com/bawu/p/8267474.html
Copyright © 2011-2022 走看看