zoukankan      html  css  js  c++  java
  • lintcode :搜索二维矩阵

    题目:

    搜索二维矩阵

    写出一个高效的算法来搜索 m × n矩阵中的值。

    这个矩阵具有以下特性:

    • 每行中的整数从左到右是排序的。
    • 每行的第一个数大于上一行的最后一个整数。
    样例

    考虑下列矩阵:

    [
      [1, 3, 5, 7],
      [10, 11, 16, 20],
      [23, 30, 34, 50]
    ]
    

    给出 target = 3,返回 true

    挑战

    O(log(n) + log(m)) 时间复杂度

    解题:

    更新730

    直接二分查找

        public boolean searchMatrix(int[][] A, int target) {
            // write your code here
            if(A == null || A.length == 0 || A[0].length ==0)
                return false;
            int row = A.length;
            int col = A[0].length;
            int len = row * col;
            int left = 0;
            int right = len-1 ;// 
            while(left <= right){
                int mid = left + (right - left)/2;
                int x = A[mid/col][mid%col];
                if(x==target){
                    return true;
                }else if(x>target){
                    right = mid-1;
                }else{
                    left = mid+1;
                }
            }
            return false;
        }

    1.最简单的方法就是遍历整个矩阵,时间复杂度:O(log(mn)),这个应该等于O(long(n)+log(m))

    2.题目给的矩阵是有序矩阵,先按照最后一列二分查找,确定列,再二分确定行,时间复杂度O(log(m)) + O(log(n)),哦,哦,哦,题目的挑战可能是搞错了。。。

    1.暴力

    Java程序:

    public class Solution {
        /**
         * @param matrix, a list of lists of integers
         * @param target, an integer
         * @return a boolean, indicate whether matrix contains target
         */
        public boolean searchMatrix(int[][] matrix, int target) {
            // write your code here 二分查找
            if(matrix==null)
                return false;
            int m  = matrix.length;
            if(m==0)
                return false;
            int n = matrix[0].length;
            for(int i=0;i<m;i++){
                for(int j=0;j<n;j++)
                    if(matrix[i][j]==target)
                        return true;
            }
            return false;
        }
    }
    View Code

     总耗时: 1571 ms

    Python程序:

    class Solution:
        """
        @param matrix, a list of lists of integers
        @param target, an integer
        @return a boolean, indicate whether matrix contains target
        """
        def searchMatrix(self, matrix, target):
            # write your code here
            if matrix==None:
                return False
            m = len(matrix)
            if m==0:
                return False
            n = len(matrix[0])
            for i in range(m):
                for j in range(n):
                    if matrix[i][j]==target:
                        return True
            return False
    View Code

    总耗时: 260 ms

    2.二分法

    利用二分思想程序,先求所在的行,再求所在的列,搞了好久,边界错了好多次。。。

    Java程序:

    public class Solution {
        /**
         * @param matrix, a list of lists of integers
         * @param target, an integer
         * @return a boolean, indicate whether matrix contains target
         */
        public boolean searchMatrix(int[][] matrix, int target) {
            // write your code here 二分查找
            if(matrix==null)
                return false;
            int nrow  = matrix.length;
            if(nrow==0)
                return false;
            int ncol = matrix[0].length;
            // 行 nrow
            //列 ncol
            int row = rowbinSearch(matrix,0,nrow-1,ncol,target);
            int col = colbinSearch(matrix,0,ncol-1,row,target);
            if(col!=-1)
                return true;
            return false;
        }
        // 找出所在的行
        private int rowbinSearch(int[][] matrix,int left,int right,int ncol,int target){
            //矩阵matrix ,二分的两个界:left、right,矩阵的最后一列ncol,目标值target
            int median = (left + right)/2;
            int row = median;
            if(left==right)
                return left;
            if(matrix[left][ncol-1]<=target && matrix[left+1][ncol-1]>target)
                return left;
            if(matrix[median][ncol-1]>= target && matrix[median][0]<=target)
                return median;
            if(matrix[median][ncol-1]<target)
                row = rowbinSearch(matrix,median+1,right,ncol,target);
            else
                row = rowbinSearch(matrix,left,median-1,ncol,target);
            return row;
        }
        // 找出所在的列
        private int colbinSearch(int[][] matrix,int left,int right,int row,int target){
            //矩阵matrix ,二分的两个界:left、right,target所在的行: row,目标值target
            int median = (left + right)/2;
            int col = median;
            if(left>right)
                return -1;
            if(left==right && matrix[row][left]!=target)
                return -1;
            if(matrix[row][median]==target)
                return median;
            if(matrix[row][median]<target)
                col = colbinSearch(matrix,median+1,right,row,target);
            else
                col = colbinSearch(matrix,left,median-1,row,target);
            return col;
        }
    }
    View Code

    总耗时: 2246 ms

    3.暴力2.0

    九章算法中看到的,给的Java程序利用二分法,但是没有用递归,给的Python程序,没有明显的用到矩阵变量,但是通过商和余数确定所在的行和列

    Python程序:

    class Solution:
        """
        @param matrix, a list of lists of integers
        @param target, an integer
        @return a boolean, indicate whether matrix contains target
        """
        def searchMatrix(self, matrix, target):
            # write your code here
            if len(matrix)==0:
                return False
            n,m=len(matrix),len(matrix[0])
            start,end = 0,n*m-1
            while start+1< end:
                mid = (start + end)/2
                x,y = mid/m,mid%m
                if matrix[x][y]<target:
                    start = mid
                else:
                    end = mid
            x,y = start/m,start%m
            if matrix[x][y]==target:
                return True
            x,y = end/m,end%m
            if matrix[x][y] == target:
                return True
            return False
    View Code

    总耗时: 261 ms

    更新

    可每次去除一行或者一列,这样划分的形式解题

    时间复杂度O(M+N)

    public class Solution {
        /**
         * @param matrix, a list of lists of integers
         * @param target, an integer
         * @return a boolean, indicate whether matrix contains target
         */
        public boolean searchMatrix(int[][] matrix, int target) {
            // write your code here
            if(matrix == null || matrix.length == 0 || matrix[0].length ==0)
                return false;
            int row = 0;
            int col = matrix[0].length-1;
            return searchMatrix(matrix,row,col,target);
        }
        // 右上角开始是找
        public boolean searchMatrix(int[][] mat,int row,int col,int target){
            if(row<0 || row>= mat.length || col<0 || col>mat[0].length)
                return false;
            if(mat[row][col] == target)
                return true;
            else if(mat[row][col] < target)
                return searchMatrix(mat,row+1,col,target);
            else
                return searchMatrix(mat,row,col-1,target);
        }
    }

    该成递归形式

    注意下面的两个while循环

    public class Solution {
        /**
         * @param matrix, a list of lists of integers
         * @param target, an integer
         * @return a boolean, indicate whether matrix contains target
         */
        public boolean searchMatrix(int[][] matrix, int target) {
            // write your code here
            if(matrix == null || matrix.length == 0 || matrix[0].length ==0)
                return false;
            int row = 0;
            int col = matrix[0].length-1;
        // 注意下面两个while 循环 row  col 都要判断的
            while(row< matrix.length&& col>=0){
                while(row< matrix.length&& col>=0){
                    if (matrix[row][col] == target){
                        return true;
                    }else if(matrix[row][col] > target){
                        col--;
                    }else{
                        row++;
                    }
                }
            }
            return false;
        }
    
    }
  • 相关阅读:
    【POJ1961】period
    主席树入门
    noip模拟【tea】
    noip模拟【service】
    noip模拟【noname】
    clearfix清除浮动
    九大内置对象
    2017/10/10 jar包错误
    mybatis案例源码详解
    自动类型转换
  • 原文地址:https://www.cnblogs.com/bbbblog/p/4883615.html
Copyright © 2011-2022 走看看