一、kafka的基础架构
1)Producer :消息生产者,就是向kafka broker发消息的客户端; 2)Consumer :消息消费者,向kafka broker取消息的客户端; 3)Consumer Group (CG):消费者组,由多个consumer组成。消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个消费者消费;消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。 4)Broker :一台kafka服务器就是一个broker。一个集群由多个broker组成。一个broker可以容纳多个topic。 5)Topic :可以理解为一个队列,生产者和消费者面向的都是一个topic; 6)Partition:为了实现扩展性,一个非常大的topic可以分布到多个broker(即服务器)上,一个topic可以分为多个partition,每个partition是一个有序的队列; 7)Replica:副本,为保证集群中的某个节点发生故障时,该节点上的partition数据不丢失,且kafka仍然能够继续工作,kafka提供了副本机制,一个topic的每个分区都有若干个副本,一个leader和若干个follower。 8)leader:每个分区多个副本的“主”,生产者发送数据的对象,以及消费者消费数据的对象都是leader。 9)follower:每个分区多个副本中的“从”,实时从leader中同步数据,保持和leader数据的同步。leader发生故障时,某个follower会成为新的follower。
二、kafka的文件存储机制
由于生产者生产的消息会不断追加到log文件末尾,为防止log文件过大导致数据定位效率低下,Kafka采取了分片和索引机制,将每个partition分为多个segment。每个segment对应两个文件——“.index”文件和“.log”(默认最大为1g可配)文件。这些文件位于一个文件夹下,该文件夹的命名规则为:topic名称+分区序号。例如,first这个topic有三个分区,则其对应的文件夹为first-0,first-1,first-2。
index和log文件以当前segment的第一条消息的offset命名。下图为index文件和log文件的结构示意图。
“.index”文件存储大量的索引信息,“.log”文件存储大量的数据,索引文件中的元数据指向对应数据文件中message的物理偏移地址。
三、kafka生产者
1,kafka集群分区的原因:
(1)方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;
(2)可以提高并发,因为可以以Partition为单位读写了。
2,生产者分区的原则:
(1)指明 partition 的情况下,直接将指明的值直接作为 partiton 值;
(2)没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 数进行取余得到 partition 值;
(3)既没有 partition 值又没有 key 值的情况下,第一次调用时随机生成一个整数(后面每次调用在这个整数上自增),将这个值与 topic 可用的 partition 总数取余得到 partition 值,也就是常说的 round-robin 算法。
3,ISR:
Leader维护了一个动态的in-sync replica set (ISR),意为和leader保持同步的follower集合。当ISR中的follower完成数据的同步之后,leader就会给follower发送ack。如果follower长时间未向leader同步数据,则该follower将被踢出ISR,该时间阈值由replica.lag.time.max.ms参数设定。Leader发生故障之后,就会从ISR中选举新的leader。
4,Kafka的消息可靠性保障ack:
0:producer不等待broker的ack,这一操作提供了一个最低的延迟,broker一接收到还没有写入磁盘就已经返回,当broker故障时有可能丢失数据;
1:producer等待broker的ack,partition的leader落盘成功后返回ack,如果在follower同步成功之前leader故障,那么将会丢失数据;
-1(all):producer等待broker的ack,partition的leader和follower全部落盘成功后才返回ack。但是如果在follower同步完成后,broker发送ack之前,leader发生故障,那么会造成数据重复。无法保证幂等性,故而用Exactly Once:idempotent + at least once = exactly once
5,Kafka的在0.11.0版本之后是如何解决消息的幂等性(Exactly Once):
为了实现Producer的幂等语义,Kafka引入了Producer ID(即PID)和Sequence Number。每个新的Producer在初始化的时候会被分配一个唯一的PID,该PID对用户完全透明而不会暴露给用户。
对于每个PID,该Producer发送数据的每个<Topic, Partition>都对应一个从0开始单调递增的Sequence Number。
类似地,Broker端也会为每个<PID, Topic, Partition>维护一个序号,并且每次Commit一条消息时将其对应序号递增。对于接收的每条消息,如果其序号比Broker维护的序号(即最后一次Commit的消息的序号)大一,则Broker会接受它,否则将其丢弃:
如果消息序号比Broker维护的序号大一以上,说明中间有数据尚未写入,也即乱序,此时Broker拒绝该消息,
Producer抛出InvalidSequenceNumber
如果消息序号小于等于Broker维护的序号,说明该消息已被保存,即为重复消息,Broker直接丢弃该消息,
Producer抛出DuplicateSequenceNumber
上述设计解决了0.11.0.0之前版本中的两个问题:
Broker保存消息后,发送ACK前宕机,Producer认为消息未发送成功并重试,造成数据重复 前一条消息发送失败,后一条消息发送成功,前一条消息重试后成功,造成数据乱序
使用时,只需将enable.idempotence属性设置为true,kafka自动将acks属性设为-1。
6,故障处理细节
(1)follower故障
follower发生故障后会被临时踢出ISR(),待该follower恢复后,follower会读取本地磁盘记录的上次的HW,并将log文件高于HW的部分截取掉,从HW开始向leader进行同步。等该follower的LEO大于等于该Partition的HW,即follower追上leader之后,就可以重新加入ISR了。
(2)leader故障
leader发生故障之后,会从ISR中选出一个新的leader,之后,为保证多个副本之间的数据一致性,其余的follower会先将各自的log文件高于HW的部分截掉,然后从新的leader同步数据。
注意:这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。
四、Kafka消费者
1,消费方式:
consumer采用pull(拉)模式从broker中读取数据
push(推)模式很难适应消费速率不同的消费者,因为消息发送速率是由broker决定的。它的目的是尽可能以最快速度传递消息,但是这样很容易造成consumer来不及处理消息,典型的表现就是拒绝服务以及网络拥塞。
pull则可以根据consumer的消费能力以适当的速率消费消息。不足:如果kafka没有数据,消费者可能会陷入循环中,一直返回空数据。针对这一点,Kafka的消费者在消费数据时会传入一个时长参数timeout,如果当前没有数据可供消费,consumer会等待一段时间之后再返回,这段时长即为timeout。
2,分区分配策略:
一个消费者组中有多个消费者,一个topic有多个partition分区,而每个分区最多只能被一个消费者组中的一个消费者消费,故而这里就涉及到partition分区分配策略的问题,即确定哪个partition由哪个consumer来消费。
kafka的分配策略:roundrobin和range(默认)
range:按照每个topic的分区进行range分配,假设n=分区数/消费者数量,m=分区数%消费者数量,那么前m个消费者每个分配n+1个分区,后面的(消费者数量-m)个消费者每个分配n个分区。这样当同一个组同时消费多个topic时,靠前的消费者需要消费的分区偏多
T1和T2表示两个主题;C1和C2表示同一个消费者组的两个消费者 C1:T1(0,1,2,3) T2(0,1,2,3) C2:T1(4,5,6) T2(4,5,6)
这样C1就比C2多两个分区消费
roundrobin:把所有的partition和consumer列出来,然后轮询consumer和partition,尽可能的让把partition均匀的分配给consumer
具体分配策略参考:https://blog.csdn.net/qq_39907763/article/details/82697211
3,offset的维护
由于consumer在消费过程中可能会出现断电宕机等故障,consumer恢复后,需要从故障前的位置的继续消费,所以consumer需要实时记录自己消费到了哪个offset,以便故障恢复后继续消费。
Kafka0.9版本之前,consumer默认将offset保存在Zookeeper中,从0.9版本开始,consumer默认将offset保存在Kafka一个内置的topic中,该topic为__consumer_offsets。
五、Kafka的高效读写:
1)顺序写磁盘:
kafka的producer生产数据,要写入到log中,写的过程是一直追加到文件末端,为顺序写。官网有数据表明,同样的磁盘,顺序写能达到600M/s,而随机写只有100k/s。这与磁盘的机械结构有关系,顺序写之所以快,是因为其省去了大量磁头寻址的时间
2)零拷贝复制:
六、Zookeeper在kafka中的作用
Kafka集群中有一个broker会被选举为Controller(先抢占的broker就为leader),负责管理集群broker的上下线,所有topic的分区副本分配和leader选举等工作。
Controller的管理工作都是依赖于Zookeeper的。