zoukankan      html  css  js  c++  java
  • PH_Pooled Featrues Classification MIREX 2011 Submission

    Abstract
    1. Principal Mel-Spectrum Components (Feature)
    2. Temporal Pooling Functions (Model)
    3. Single Hidden Layer Neural Network, thus Multi-layer Perceptron (Classifier)

    Audio Preprocessing
        Feature: PMSC (Principal Mel-Spectrum Components)
    1. Original Data:  30s, 22.05KHz, mono, wav
    2. Process Steps:
      1. DFT (spectral domain)
        we compute DFTs over windows of 1024 samples on audio at 22.05 KHz (i.e. roughly 46ms) with a frame step of 512 samples.
      2. Mel-Compression
        we run the spectral amplitudes through a set of 256 mel-scaled triangular filters to abtain a set of spectral energy bands.
      3. Principal Component analysis whitening (PCA whitening)
        we compute the principal components of a random sub-sample of training set. In order to obtain features with unitary variance, we multiply(乘以) each component by the inverse square of its eigenvalue(特征值平方的倒数). ---- PCA whitening.
    Model
        PFC (Pooled Features Classifier)
    1. Pooling Operation
      the model applies a given set of pooling functions (how many?) to the PMSC features, and sends the pooled features to a classifier(MLP, with hidden layer of 2000 units, sigmoid activation, L2 weight decay and cross-entropy cost).
    2. Classify
      each pooling window is considered as a training example for the classifier, and average the predictions of the classifier over all the windows of a given clip to obtain the final classification (what is the rule?).
    Tasks
    1. Classification (train/test task)
      the MLP outputs an affinity prediction for each class (pooling functions tread each pooling window as a training example).
    2. Tagging
      1. Affinity
        the affinity scores for a song is thus directly the output of the MLP.
      2. Binary Classification
        choose the threshold that optimizes the F1-score on the validation set.

    Tools
    1. Theano: Theano is a numerical computation library for Python. In Theano, computations are expressed using a NumPy-like syntax and compiled to run efficiently on either CPU or GPU architectures.
       
        






  • 相关阅读:
    Linux-命令-seq
    怎样打开U盘最安全
    SQL Anywhere .NET
    技巧:低版本VS打开高版本VS创建的工程
    数据库插入数据返回当前主键ID值方法
    Nvelocity模板引擎
    .ashx文件与.ashx.cs
    该站点安全证书的吊销信息不可用。是否继续?
    IE8“开发人员工具”(下)
    IE8“开发人员工具”(上)
  • 原文地址:https://www.cnblogs.com/beanocean/p/3737428.html
Copyright © 2011-2022 走看看