Description
给你一个序列,询问 ([L,R]) 区间中颜色种数,支持修改操作,不强制在线. (n,mleqslant 10^4)
Sol
三维莫队. QAQ.
简单的说一下吧...
三维莫队就是维护三元组 ((L,R,T)) 的答案,表示 ([L,R]) 区间在进行了 (T) 次修改后的答案.
然后就可以处理 (Lpm 1,Rpm 1,Tpm 1) 的答案了.
关于三维莫队:
我们需要对 (L,R) 分块,像处理二维莫队一样按 (L,R,T) 的顺序排序,移动 (L,R) 直接统计颜色个数移动就可以.
对于 (T) 的移动,它表示的其实是一个前缀,那么对于 (T) 的移动就可以删去再把新元素加上贡献就可以,使它直接和原来的元素交换,这样不管扩大还是缩小都是适用的.
关于复杂度:
因为需要枚举前两维的块,最后一维直接暴力,那么设块大小为 (B) ,则有复杂度
(O((frac{n}{B})^2*n+mB))
(O(frac{n^3}{B^2}+mB))
求导.
(m+n^3*(-2)*B^{-3}=0)
(B^3=frac{n^3}{m})
因为 (n,m) 同阶,
(B^3=n^2)
(B=n^{frac{2}{3}})
所以复杂度为 (O(n^{frac{5}{3}})) .
PS1:从这篇博客开始写简述题意
PS2:复杂度证明问的TA爷 QAQ.
PS3:三维莫队其实没用QAQ,跑不了 (10^5) 也就跑跑 (10^4)
Code
/**************************************************************
Problem: 2120
User: BeiYu
Language: C++
Result: Accepted
Time:2232 ms
Memory:5720 kb
****************************************************************/
#include<cstdio>
#include<cmath>
#include<utility>
#include<vector>
#include<algorithm>
#include<cstring>
#include<iostream>
using namespace std;
const int N = 10005;
const int M = 1000005;
#define mpr(a,b) make_pair(a,b)
int n,m,B,cp,cq;
int a[N],c[M];
int b1[N],b2[N];
int L,R,T,ans;
pair<int,int> s[N];
struct Q{ int l,r,t,id; }p[N],q[N];
bool operator < (const Q &a,const Q &b){
if(b1[a.l]!=b1[b.l]) return b1[a.l]<b1[b.l];
if(b2[a.r]!=b2[b.r]) return b2[a.r]<b2[b.r];
return a.t<b.t;
}
inline int in(int x=0,char ch=getchar()){ while(ch>'9'||ch<'0') ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x; }
void Move(int x,int v){
if(v==-1){ if((--c[a[x]])==0) ans--; }
else{ if((++c[a[x]])==1) ans++; }
}
void Update(int x){
if(L<=p[x].l&&p[x].l<=R) Move(p[x].l,-1);
swap(p[x].r,a[p[x].l]);
if(L<=p[x].l&&p[x].l<=R) Move(p[x].l,1);
}
int main(){
// freopen("in.in","r",stdin);
n=in(),m=in();
for(int i=1;i<=n;i++) a[i]=in();
for(int i=1;i<=m;i++){
char ch=getchar();while(ch>'Z'||ch<'A') ch=getchar();
int u=in(),v=in();
if(ch=='R') p[++cp]=(Q){ u,v,0,0 };
else q[++cq]=(Q){ u,v,cp,i };
}B=pow(n,5.0/3);
for(int i=1;i<=n;i++) b1[i]=b2[i]=(i-1)/B+1;
sort(q+1,q+cq+1);
Move(1,1),L=R=1,T=0;
for(int i=1;i<=cq;i++){
while(R<q[i].r) Move(++R,+1);while(R>q[i].r) Move(R--,-1);
while(L<q[i].l) Move(L++,-1);while(L>q[i].l) Move(--L,+1);
while(T>q[i].t) Update(T--);while(T<q[i].t) Update(++T);
// cout<<L<<" "<<R<<" "<<T<<" "<<ans<<endl;
s[i]=mpr(q[i].id,ans);
}sort(s+1,s+cq+1);
for(int i=1;i<=cq;i++) printf("%d
",s[i].second);
return 0;
}