zoukankan      html  css  js  c++  java
  • Kafka producer 的活动关系图

    在使用kafka producer API时,主要有2个过程:创建producer实例过程,调用producer实例发送数据(同步/异步)过程,其实在创建producer实例的同时,也创建了一个sender线程,sender线程不断轮询更新metadata及从accumulator中读取数据并真正发送到某个broker上面,下面的活动关系图大致描述了producer的API的内部调用过程

    创建producer实例:

    1:client读取producer config,sample如下:

    {
    	security.protocol=SASL_PLAINTEXT,
    	bootstrap.servers=server1.com:8881,server2:8882,
    	value.serializer=xxx.serialization.avro.AvroWithSchemaSpecificSer,
    	key.serializer=org.apache.kafka.common.serialization.LongSerializer,
    	client.id=15164@hostname,
    	acks=all
    }

    2:调用以下方法创建producer实例

    Producer<K,V> producer = new KafkaProducer<>(props, keySerClass, valueSerClass);

    3:Kafka Producer实例是producer的关键入口,封装了后续所有组件的调用,在创建producer实例的过程中,将依次创建以下组件

    创建metadata实例,传递参数 refreshBackoffMs(最小过期时间retry.backoff.ms,默认值100毫秒),metadataExpireMs(元数据最大保留时间metadata.max.age.ms,默认值300000毫秒)

    metadata保存了topic,partition,borker的相关信息

    this.metadata = new Metadata(retryBackoffMs, config.getLong(ProducerConfig.METADATA_MAX_AGE_CONFIG));

    4:创建累加器RecordAccumulator

    累计器是一个保存消息的有边界的内存队列,当客户端发送数据时,数据将append到队列尾部,如果内存耗尽,append调用将被阻塞,在实例内部,batches成员保存将被sender的数据

    private final ConcurrentMap<TopicPartition, Deque<RecordBatch>> batches;

    调用方法

    this.accumulator = new RecordAccumulator(config.getInt(ProducerConfig.BATCH_SIZE_CONFIG), //batch.size,默认值16384(16K),record成批发送的字节数
                        this.totalMemorySize, //buffer.memory,默认值33554432(32M),缓冲区内存字节数
                        this.compressionType, //compression.type,默认值none,表示producer的数据压缩类型,有效值为none,gzip,snappy,lz4
                        config.getLong(ProducerConfig.LINGER_MS_CONFIG),
                        retryBackoffMs, //retry.backoff.ms,默认值100毫秒,metadata最小过期时间
                        metrics,
                        time);

     5:创建通道构建器实例,ChannelBuilder是一个接口,因安全认证方式不同,分别有具体的实现类SaslChannelBuilder,SslChannelBuilder及PlaintextChannelBuilder,通道是java nio中的实际与IO通信的部分,在kafka中,类KafkaChannel封装了SocketChannel。在创建构建器实例时,将进行登录认证

    ChannelBuilder channelBuilder = ClientUtils.createChannelBuilder(config.values());

    6:创建网络客户端实例,NetworkClient封装了底层网络的访问,及metadata数据的更新。

                NetworkClient client = new NetworkClient(
                        new Selector(config.getLong(ProducerConfig.CONNECTIONS_MAX_IDLE_MS_CONFIG), this.metrics, time, "producer", channelBuilder),
                        this.metadata,
                        clientId,
                        config.getInt(ProducerConfig.MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION),
                        config.getLong(ProducerConfig.RECONNECT_BACKOFF_MS_CONFIG),
                        config.getInt(ProducerConfig.SEND_BUFFER_CONFIG),
                        config.getInt(ProducerConfig.RECEIVE_BUFFER_CONFIG),
                        this.requestTimeoutMs, time);

    在NetworkClient构造函数中,传进了Selector的实例,这是一个封装了java nio selector的选择器,在Selector构造函数中开启了java nio selector,并且也将前面创建的ChannelBuilder传给NetworkClient内部成员

    this.nioSelector = java.nio.channels.Selector.open();

     7:创建线程类sender并启动线程,将前面创建的NetworkClient实例,metadata实例及累加器accumulator全部导入到sender类中,sender线程类是一个关键类,所有的动作都是在这个线程中处理的,当sender线程启动后,不断的轮询进行元数据的更新和消息的发送

                this.sender = new Sender(client,
                        this.metadata,
                        this.accumulator,
                        config.getInt(ProducerConfig.MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION) == 1,
                        config.getInt(ProducerConfig.MAX_REQUEST_SIZE_CONFIG),
                        (short) parseAcks(config.getString(ProducerConfig.ACKS_CONFIG)),
                        config.getInt(ProducerConfig.RETRIES_CONFIG),
                        this.metrics,
                        new SystemTime(),
                        clientId,
                        this.requestTimeoutMs);
                String ioThreadName = "kafka-producer-network-thread" + (clientId.length() > 0 ? " | " + clientId : "");
                this.ioThread = new KafkaThread(ioThreadName, this.sender, true);
                this.ioThread.start();

    发送数据过程:

    1:客户端发送数据

    客户端构造好ProducerRecord,调用send方法发送消息,send方法是一个异步方法,返回一个future对象,调用完后就立即返回,send方法只是把数据写入到内存队列RecordAccumulator后就返回了,如果想同步发送消息并确认消息是否发送成功,可以再调用get方法,这将阻塞当前发送线程

    ProducerRecord<K, V> producerRecord = new ProducerRecord<>(“topic”,data);
    producer.send(producerRecord, new ProducerCallBack(requestId));

    在调用send方法时,可以传入回调对象,回调函数用于处理send后对ack的处理

    2:record 保存到累加器中

    在send方法内部,如果有配置拦截器,则先调用拦截器对数据做处理,处理完后的数据,再调用doSend方法,

    ProducerRecord<K, V> interceptedRecord = this.interceptors == null ? record : this.interceptors.onSend(record);
    return doSend(interceptedRecord, callback); //异步发送一条记录到topic

    在doSend方法把记录保存到累加器之前,需要做几个事情,首先需要调用waitOnMetadata确认给定topic的并包含partition的metadata是否可用,在waitOnMetadata中如果没有partition,则在循环中请求更新metadata,并唤醒sender线程 (sender.wakeup()),更新metadata,如果超出block时间则timeout异常退出

    long waitedOnMetadataMs = waitOnMetadata(record.topic(), this.maxBlockTimeMs); //KafkaProducer.send()的最长阻塞时间,max.block.ms,默认为60000毫秒
    while (metadata.fetch().partitionsForTopic(topic) == null) {
                log.trace("Requesting metadata update for topic {}.", topic);
                int version = metadata.requestUpdate();
                sender.wakeup(); //唤醒sender线程去更新metadata
                metadata.awaitUpdate(version, remainingWaitMs); //等待metadata更新,如果超出max.block.ms时间,则抛出timeout异常
                ......
    }

    如果在到达 max.block.ms前成功更新metadata,则对record做key/value序列化,添加到累加器中,然后再次唤醒sender线程

    RecordAccumulator.RecordAppendResult result = accumulator.append(tp, timestamp, serializedKey, serializedValue, interceptCallback, remainingWaitMs);

    在这个阶段中,数据只是发送到一个中间的缓冲区中,并没有真正的传到broker上

    sender线程

    1:sender线程启动后,循环执行Sender.run(now)函数,此函数的最主要功能就是从accumulator中drain出数据,转成生产者请求数据List<ClientRequest>

    2:如果有生产者请求数据列表,则调用NetworkClient.send函数,此函数内部调用了doSend(ClientRequest,long)函数,将请求加入飞行队列中inFlightRequests,

    {NetworkClient}    

    private void doSend(ClientRequest request, long now) { request.setSendTimeMs(now); this.inFlightRequests.add(request); //将请求加入飞行队列 selector.send(request.request()); //数据被保存到KafkaChannel的内存中 }

    3:接着调用Selector.send(Send)方法,从Send数据中取到目标KafkaChannel,再放到KafkaChannel通道的待发送内存中,此时数据还没有真正的被传递broker

    {Selector} 
    public void send(Send send) { KafkaChannel channel = channelOrFail(send.destination()); //取到目标channel try { channel.setSend(send); //把数据保存到目标channel内存中 } catch (CancelledKeyException e) { this.failedSends.add(send.destination()); close(channel); } }

    4:当所有从accumulator中取出来的数据被放到对应的channel后,调用NetworkClient.poll,这才是对socket实际读写的地方

    5-8:首先需要对元数据的更新,在maybeUpdate中,如果元数据更新时间(metadataTimeout)已经到0了,说明需要更新元数据,找到最近最少用的节点,如果没建好连接,则先创建socket的连接,到第7步,调用Selector.connect,到第8步调用SocketChannel.open及SocketChannel.connect建立socket连接

    {NetworkClient}
    
            public long maybeUpdate(long now) {
                // should we update our metadata?
                long timeToNextMetadataUpdate = metadata.timeToNextUpdate(now);
                long timeToNextReconnectAttempt = Math.max(this.lastNoNodeAvailableMs + metadata.refreshBackoff() - now, 0);
                long waitForMetadataFetch = this.metadataFetchInProgress ? Integer.MAX_VALUE : 0;
                // if there is no node available to connect, back off refreshing metadata
                long metadataTimeout = Math.max(Math.max(timeToNextMetadataUpdate, timeToNextReconnectAttempt),
                        waitForMetadataFetch);
    
                if (metadataTimeout == 0) {
                    // Beware that the behavior of this method and the computation of timeouts for poll() are
                    // highly dependent on the behavior of leastLoadedNode.
                    Node node = leastLoadedNode(now);
                    maybeUpdate(now, node);
                }
    
                return metadataTimeout;
            }
    
    private void maybeUpdate(long now, Node node) {
                if (node == null) {
                    log.debug("Give up sending metadata request since no node is available");
                    // mark the timestamp for no node available to connect
                    this.lastNoNodeAvailableMs = now;
                    return;
                }
                String nodeConnectionId = node.idString();
    
                if (canSendRequest(nodeConnectionId)) { //如果连接以及建好,可以发送数据
                    this.metadataFetchInProgress = true;
                    MetadataRequest metadataRequest;
                    if (metadata.needMetadataForAllTopics())
                        metadataRequest = MetadataRequest.allTopics();
                    else
                        metadataRequest = new MetadataRequest(new ArrayList<>(metadata.topics()));
                    ClientRequest clientRequest = request(now, nodeConnectionId, metadataRequest);
                    log.debug("Sending metadata request {} to node {}", metadataRequest, node.id());
                    doSend(clientRequest, now); //发送数据,将数据保存到channel的内存中
                } else if (connectionStates.canConnect(nodeConnectionId, now)) {
                    // we don't have a connection to this node right now, make one
                    log.debug("Initialize connection to node {} for sending metadata request", node.id());
                    initiateConnect(node, now); //创建socket连接
                    // If initiateConnect failed immediately, this node will be put into blackout and we
                    // should allow immediately retrying in case there is another candidate node. If it
                    // is still connecting, the worst case is that we end up setting a longer timeout
                    // on the next round and then wait for the response.
                } else { // connected, but can't send more OR connecting
                    // In either case, we just need to wait for a network event to let us know the selected
                    // connection might be usable again.
                    this.lastNoNodeAvailableMs = now;
                }
            }

    9:socket连接建立好后,注册到nioSelector中,并使用前面创建的channelBuilder创建KafkaChannel通道,KafkaChannel中创建和封装了传输层TransportLayer,传输层封装了socketChannel,通道保存在Map中,而且KafkaChannel中也创建了authenticator认证器

    {Selector}
    
         SelectionKey key = socketChannel.register(nioSelector, SelectionKey.OP_CONNECT); //注册到Selector中
         KafkaChannel channel = channelBuilder.buildChannel(id, key, maxReceiveSize); //创建KafkaChannel
         key.attach(channel);
         this.channels.put(id, channel);

    10:如果到节点的状态是连接的,并且channel状态已经ready(传输层是ready的,authenticator认证器是complete状态),那么在上面metadataUpdate中,就可以发送元数据更新的请求,调用NetworkClient.doSend,数据被放到飞行请求队列(inFlightRequests)及相应的KafkaChannel内存中,如果inFlightRequests中的请求在请求超时后(默认为"request.timeout.ms" -> "30000",30秒),将断开请求所对应的socket连接,并设置重刷metadata

    11:调用Selector.poll进行数据的IO操作,如果获取到selector key,则在这个可以上取到对应的KafkaChannel,调用channel.write发送数据到broker上

  • 相关阅读:
    Delphi IDE 设置
    我最喜欢的歌曲
    Window 常用文件
    Delphi TTable 组件
    Delphi TDatabase 组件
    c语言->和 .
    Shell 工具之 gawk
    Shell 工具之 sed
    Shell 语法之函数
    Shell 语法之信号与作业
  • 原文地址:https://www.cnblogs.com/benfly/p/9360563.html
Copyright © 2011-2022 走看看