zoukankan      html  css  js  c++  java
  • [JSOI2011]分特产

    Description

    JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们。
    JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任
    何一个同学因为没有拿到特产而感到失落,所以每个同学都必须至少分得一个特产。
    例如,JYY 带来了2 袋麻花和1 袋包子,分给A 和B 两位同学,那么共有4 种不同的
    分配方法:
    A:麻花,B:麻花、包子
    A:麻花、麻花,B:包子
    A:包子,B:麻花、麻花
    A:麻花、包子,B:麻花

    Input

    输入数据第一行是同学的数量N 和特产的数量M。
    第二行包含M 个整数,表示每一种特产的数量。
    N, M 不超过1000,每一种特产的数量不超过1000

    Output

    输出一行,不同分配方案的总数。由于输出结果可能非常巨大,你只需要输出最终结果
    MOD 1,000,000,007 的数值就可以了。

    Sample Input

    5 4
    1 3 3 5

    Sample Output

    384835


    题解

    容斥
    直接计算方案很困难
    我们可以考虑计算有多少种不符合条件的
    我们还是设(g[i])表示至少有i名同学没有分到
    (f[i])表示整好有i名同学没有分到
    我们先不考虑每个同学都要分到的限制
    那么有(k)个同学分礼物的方案数就是(S[k]=prod_{i=1}^{m}{C(num[i]+k-1,k-1)}),也就是对每种礼物做方程整数解然后乘起来
    那么显然(g[k]=sum_{i=k}^{n}{C(n,i)*S[n-i]})
    然后也易得(g[k]=sum_{i=k}^{n}{C(i,k)*f[i]})
    所以我们对上式二项式反演得(f[k]=sum_{i=k}^{n}{(-1)^{i-k}*C(i,k)*g[i]})
    然后答案就是(S[n]-sum_{i=1}^{n}{f[i]})

    代码

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    # define int long long
    const int M = 2005 ;
    const int mod = 1e9 + 7 ;
    using namespace std ;
    inline int read() {
    	char c = getchar() ; int x = 0 , w = 1 ;
    	while(c>'9'||c<'0'){ if(c=='-') w = -1 ; c = getchar() ; }
    	while(c>='0'&&c<='9') { x = x*10+c-'0' ; c = getchar() ; }
    	return x*w ;
    }
    
    int n , m , Ans , num[M] , s[M] , c[M][M] ;
    inline int Calc(int k) {
    	int ret = -1 , temp = 0 ;
    	for(int i = k ; i <= n ; i ++) {
    		ret *= -1 ;
    		temp = (temp + ret * c[i][k] * c[n][i] % mod * s[n - i] % mod + mod) % mod ;
    	}
    	return temp ;
    }
    # undef int
    int main() {
    # define int long long
    	n = read() ; m = read() ; 
    	for(int i = 1 ; i <= m ; i ++) num[i] = read() ;
    	c[0][0] = 1 ;
    	for(int i = 1 ; i <= 2000 ; i ++) {
    		c[i][0] = 1 ;
    		for(int j = 1 ; j <= i ; j ++)
    		    c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod ;
    	}
    	for(int p = 1 ; p <= n ; p ++) {
    		s[p] = 1 ;
    		for(int i = 1 ; i <= m ; i ++) 
    			s[p] = (s[p] * c[num[i] + p - 1][num[i]]) % mod ;
    	}
    	Ans = s[n] ;
    	for(int i = 1 ; i < n ; i ++) Ans = (Ans - Calc(i) + mod) % mod ;
    	printf("%lld
    ",Ans) ;
    	return 0 ;
    }
    
  • 相关阅读:
    JS实现在线ps功能
    Vmware 下安装linux虚拟机
    一文了解:Redis主从复制
    一文了解:Redis过期键删除策略
    一文了解:Redis的AOF持久化
    一文了解:Redis的RDB持久化
    一文了解:Redis事务
    一文了解:Redis基础类型
    并发一:Java内存模型和Volatile
    干了这杯java之ThreadLocal
  • 原文地址:https://www.cnblogs.com/beretty/p/10284396.html
Copyright © 2011-2022 走看看