zoukankan      html  css  js  c++  java
  • CS231n assignment1 Q2 SVM

    SVM介绍
    avatar

    def L(x,y,w):
        scores = W.dot(x)
        margins = np.maximum(0,scores - scores[y] + 1)
        margins[y] = 0
        loss_i = np.sum(margins)
        return loss_i
    

    linear_svm.py

    import numpy as np
    from random import shuffle
    
    def svm_loss_naive(W, X, y, reg):
      """
      Structured SVM loss function, naive implementation (with loops).
    
      Inputs have dimension D, there are C classes, and we operate on minibatches
      of N examples.
    
      Inputs:
      - W: A numpy array of shape (D, C) containing weights. 
      - X: A numpy array of shape (N, D) containing a minibatch of data.
      - y: A numpy array of shape (N,) containing training labels; y[i] = c means
        that X[i] has label c, where 0 <= c < C.
      - reg: (float) regularization strength 正则化强度
    
      Returns a tuple of:
      - loss as single float
      - gradient with respect to weights W; an array of same shape as W
      """
      dW = np.zeros(W.shape) # initialize the gradient as zero
      # dw (3073,10) 3073=3072+1 因为预处理(添加一列1作为偏置维度,这样我们在优化时候只要考虑一个权重矩阵W就可以啦.)
      # compute the loss and the gradient
      num_classes = W.shape[1] #10
      num_train = X.shape[0] #X (500,3073)
      loss = 0.0
      for i in range(num_train):
        scores = X[i].dot(W)
        # scores (10,1) 代表对于每一类的分数
        correct_class_score = scores[y[i]]
        #y[i]=c 表示 x[i]的标签为c,其中 0 <= c <= C,correct_class_score即正确标签那一类的分数
        for j in range(num_classes):
          if j == y[i]: #跳过同类的那一个
            continue
          margin = scores[j] - correct_class_score + 1 # note delta = 1
          if margin > 0:
            loss += margin
            dW[:, y[i]] += -X[i, :]     #  根据公式:∇Wyi Li = - xiT(∑j≠yi1(xiWj - xiWyi +1>0)) + 2λWyi 
            dW[:, j] += X[i, :]         #  根据公式: ∇Wj Li = xiT 1(xiWj - xiWyi +1>0) + 2λWj , (j≠yi)
      # Right now the loss is a sum over all training examples, but we want it
      # to be an average instead so we divide by num_train.
      loss /= num_train
      dW /= num_train
    
      # Add regularization to the loss.
      loss += reg * np.sum(W * W)
      dW += reg * W
      #############################################################################
      # TODO:                                                                     #
      # Compute the gradient of the loss function and store it dW.                #
      # Rather that first computing the loss and then computing the derivative,   #
      # it may be simpler to compute the derivative at the same time that the     #
      # loss is being computed. As a result you may need to modify some of the    #
      # code above to compute the gradient.                                       #
      #############################################################################
    
    
      return loss, dW
    
    
    def svm_loss_vectorized(W, X, y, reg):
      """
      Structured SVM loss function, vectorized implementation.
    
      Inputs and outputs are the same as svm_loss_naive.
      """
      loss = 0.0
      dW = np.zeros(W.shape) # initialize the gradient as zero
    
      #############################################################################
      # TODO:                                                                     #
      # Implement a vectorized version of the structured SVM loss, storing the    #
      # result in loss.                                                           #
      #############################################################################
      scores = X.dot(W)
      #scores(500,10)即(N,C),存储每个类的分数 
      num_classes = W.shape[1] 
      num_train = X.shape[0] #num_train = N
      scores_correct = scores[np.arange(num_train),y]
      #scores_correct(1,N) y(N,1) 即对于每个训练样本,找到正确标签那一类的分数 np.arange(num_train)和y分别作为scores的系数
      scores_correct = np.reshape(scores_correct,(num_train,-1))
      #scores_correct(N,1) 
      margins = scores - scores_correct + 1
      # scores(N,C) scores_correct(N,1)  减法的方法是scores[i]中每一维都减去scores_correct[i]
      # margins(N,C)
      margins = np.maximum(0,margins)
      #对每个元素取max(0,x)
      margins[np.arange(num_train),y] = 0
      # 跳过同类的那一个
      loss += np.sum(margins) / num_train #要除以训练集个数
      loss += 0.5 * reg * np.sum(W * W) #正则项
      #############################################################################
      #                             END OF YOUR CODE                              #
      #############################################################################
    
    
      #############################################################################
      # TODO:                                                                     #
      # Implement a vectorized version of the gradient for the structured SVM     #
      # loss, storing the result in dW.                                           #
      #                                                                           #
      # Hint: Instead of computing the gradient from scratch, it may be easier    #
      # to reuse some of the intermediate values that you used to compute the     #
      # loss.                                                                     #
      #############################################################################
      margins[margins > 0] = 1
      #大于0的采用求导数
      row_sum = np.sum(margins,axis = 1)
      #row_sum(1,N) margins中每一行的和
      margins[np.arange(num_train),y] = -row_sum
      #对于正确标签那一类的梯度计算不同于其它类
      dW += np.dot(X.T,margins)/num_train + reg*W
      #############################################################################
      #                             END OF YOUR CODE                              #
      #############################################################################
    
      return loss, dW
    
    

    linear_classifier.py
    使用随机梯度下降来训练

    from __future__ import print_function
    
    import numpy as np
    from cs231n.classifiers.linear_svm import *
    from cs231n.classifiers.softmax import *
    
    class LinearClassifier(object):
    
      def __init__(self):
        self.W = None
    
      def train(self, X, y, learning_rate=1e-3, reg=1e-5, num_iters=100,
                batch_size=200, verbose=False):
        #verbose 若为真,优化时打印过程。
        """
        Train this linear classifier using stochastic gradient descent.
    
        Inputs:
        - X: A numpy array of shape (N, D) containing training data; there are N
          training samples each of dimension D.
        - y: A numpy array of shape (N,) containing training labels; y[i] = c
          means that X[i] has label 0 <= c < C for C classes.
        - learning_rate: (float) learning rate for optimization.
        - reg: (float) regularization strength.
        - num_iters: (integer) number of steps to take when optimizing
        - batch_size: (integer) number of training examples to use at each step.
        - verbose: (boolean) If true, print progress during optimization.
    
        Outputs:
        A list containing the value of the loss function at each training iteration.
        """
        num_train, dim = X.shape
        num_classes = np.max(y) + 1 # assume y takes values 0...K-1 where K is number of classes
        if self.W is None:
          # lazily initialize W
          self.W = 0.001 * np.random.randn(dim, num_classes)
    
        # Run stochastic gradient descent to optimize W
        loss_history = []
        for it in range(num_iters):
          X_batch = None
          y_batch = None
    
          #########################################################################
          # TODO:                                                                 #
          # Sample batch_size elements from the training data and their           #
          # corresponding labels to use in this round of gradient descent.        #
          # Store the data in X_batch and their corresponding labels in           #
          # y_batch; after sampling X_batch should have shape (dim, batch_size)   #
          # and y_batch should have shape (batch_size,)                           #
          #                                                                       #
          # Hint: Use np.random.choice to generate indices. Sampling with         #
          # replacement is faster than sampling without replacement.              #
          #########################################################################
          batch_inx = np.random.choice(num_train,batch_size)
          X_batch = X[batch_inx,:]
          y_batch = y[batch_inx]
          #采样
          #########################################################################
          #                       END OF YOUR CODE                                #
          #########################################################################
    
          # evaluate loss and gradient
          loss, grad = self.loss(X_batch, y_batch, reg)
          loss_history.append(loss)
    
          # perform parameter update
          #########################################################################
          # TODO:                                                                 #
          # Update the weights using the gradient and the learning rate.          #
          #########################################################################
          self.W = self.W - learning_rate * grad
          #########################################################################
          #                       END OF YOUR CODE                                #
          #########################################################################
    
          if verbose and it % 100 == 0:
            print('iteration %d / %d: loss %f' % (it, num_iters, loss))
    
        return loss_history
    
      def predict(self, X):
        """
        Use the trained weights of this linear classifier to predict labels for
        data points.
    
        Inputs:
        - X: A numpy array of shape (N, D) containing training data; there are N
          training samples each of dimension D.
    
        Returns:
        - y_pred: Predicted labels for the data in X. y_pred is a 1-dimensional
          array of length N, and each element is an integer giving the predicted
          class.
        """
        y_pred = np.zeros(X.shape[0])
        ###########################################################################
        # TODO:                                                                   #
        # Implement this method. Store the predicted labels in y_pred.            #
        ###########################################################################
        y_pred = np.argmax(np.dot(X,self.W),axis = 1)
        # X(N,D) W(D,C) y_pred(N,1)
        ###########################################################################
        #                           END OF YOUR CODE                              #
        ###########################################################################
        return y_pred
      
      def loss(self, X_batch, y_batch, reg):
        """
        Compute the loss function and its derivative. 
        Subclasses will override this.
    
        Inputs:
        - X_batch: A numpy array of shape (N, D) containing a minibatch of N
          data points; each point has dimension D.
        - y_batch: A numpy array of shape (N,) containing labels for the minibatch.
        - reg: (float) regularization strength.
    
        Returns: A tuple containing:
        - loss as a single float
        - gradient with respect to self.W; an array of the same shape as W
        """
        pass
    
    
    class LinearSVM(LinearClassifier):
      """ A subclass that uses the Multiclass SVM loss function """
    
      def loss(self, X_batch, y_batch, reg):
        return svm_loss_vectorized(self.W, X_batch, y_batch, reg)
    
    
    class Softmax(LinearClassifier):
      """ A subclass that uses the Softmax + Cross-entropy loss function """
    
      def loss(self, X_batch, y_batch, reg):
        return softmax_loss_vectorized(self.W, X_batch, y_batch, reg)
    
    
    

    cross-validation部分:

    # Use the validation set to tune hyperparameters (regularization strength and
    # learning rate). You should experiment with different ranges for the learning
    # rates and regularization strengths; if you are careful you should be able to
    # get a classification accuracy of about 0.4 on the validation set.
    learning_rates = [1e-7, 5e-5]
    regularization_strengths = [2.5e4, 5e4]
    
    # results is dictionary mapping tuples of the form
    # (learning_rate, regularization_strength) to tuples of the form
    # (training_accuracy, validation_accuracy). The accuracy is simply the fraction
    # of data points that are correctly classified.
    results = {}
    best_val = -1   # The highest validation accuracy that we have seen so far.
    best_svm = None # The LinearSVM object that achieved the highest validation rate.
    
    ################################################################################
    # TODO:                                                                        #
    # Write code that chooses the best hyperparameters by tuning on the validation #
    # set. For each combination of hyperparameters, train a linear SVM on the      #
    # training set, compute its accuracy on the training and validation sets, and  #
    # store these numbers in the results dictionary. In addition, store the best   #
    # validation accuracy in best_val and the LinearSVM object that achieves this  #
    # accuracy in best_svm.                                                        #
    #                                                                              #
    # Hint: You should use a small value for num_iters as you develop your         #
    # validation code so that the SVMs don't take much time to train; once you are #
    # confident that your validation code works, you should rerun the validation   #
    # code with a larger value for num_iters.                                      #
    ################################################################################
    for rate in learning_rates:
        for regular in regularization_strengths:
            svm = LinearSVM()
            svm.train(X_train,y_train,learning_rate = rate,reg = regular,num_iters = 1000)
            y_train_pred = svm.predict(X_train)
            accuracy_train = np.mean(y_train == y_train_pred)
            y_val_pred = svm.predict(X_val)
            accuracy_val = np.mean(y_val == y_val_pred)
            results[(rate,regular)] = (accuracy_train,accuracy_val)
            if best_val < accuracy_val:
                best_val = accuracy_val
                best_svm = svm
    ################################################################################
    #                              END OF YOUR CODE                                #
    ################################################################################
        
    # Print out results.
    for lr, reg in sorted(results):
        train_accuracy, val_accuracy = results[(lr, reg)]
        print('lr %e reg %e train accuracy: %f val accuracy: %f' % (
                    lr, reg, train_accuracy, val_accuracy))
        
    print('best validation accuracy achieved during cross-validation: %f' % best_val)
    

    Note:

      • dot mul
    1. np.arrange
      返回值: np.arange()函数返回一个有终点和起点的固定步长的排列,如[1,2,3,4,5],起点是1,终点是5,步长为1。
      参数个数情况: np.arange()函数分为一个参数,两个参数,三个参数三种情况
      1)一个参数时,参数值为终点,起点取默认值0,步长取默认值1。
      2)两个参数时,第一个参数为起点,第二个参数为终点,步长取默认值1。
      3)三个参数时,第一个参数为起点,第二个参数为终点,第三个参数为步长。其中步长支持小数。
    #一个参数 默认起点0,步长为1 输出:[0 1 2] 
    a = np.arange(3) 
    
    #两个参数 默认步长为1 输出[3 4 5 6 7 8] 
    a = np.arange(3,9) 
    
    #三个参数 起点为0,终点为4,步长为0.1 输出[ 0.   0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1.   1.1  1.2  1.3  1.4 1.5  1.6  1.7  1.8  1.9  2.   2.1  2.2  2.3  2.4  2.5  2.6  2.7  2.8  2.9] 
    a = np.arange(0, 3, 0.1)
    

    参考:https://blog.csdn.net/u011649885/article/details/76851291

    1. np.random.choice
    import numpy as np
    # 参数意思分别 是从a 中以概率P,随机选择3个, p没有指定的时候相当于是一致的分布
    a1 = np.random.choice(a=5, size=3, replace=False, p=None)
    print(a1)
    # 非一致的分布,会以多少的概率提出来
    a2 = np.random.choice(a=5, size=3, replace=False, p=[0.2, 0.1, 0.3, 0.4, 0.0])
    print(a2)
    # replacement 代表的意思是抽样之后还放不放回去,如果是False的话,那么出来的三个数都不一样,如果是
    True的话, 有可能会出现重复的,因为前面的抽的放回去了。
    

    参考:https://blog.csdn.net/qfpkzheng/article/details/79061601

  • 相关阅读:
    react: redux-devTools
    react: menuService
    react: navigator
    react style: 二级菜单
    spark复习笔记(5):API分析
    spark复习笔记(4):spark脚本分析
    maven 打包Scala代码到jar包
    spark复习笔记(3)
    mongoDB学习笔记(2)
    sparkStreaming复习笔记(1)
  • 原文地址:https://www.cnblogs.com/bernieloveslife/p/10171569.html
Copyright © 2011-2022 走看看