zoukankan      html  css  js  c++  java
  • 123.Best Time to Buy and Sell Stock III

    Say you have an array for which the ith element is the price of a given stock on day i.

    Design an algorithm to find the maximum profit. You may complete at most two transactions.

    Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).

    Example 1:

    Input: [3,3,5,0,0,3,1,4]
    Output: 6
    Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
    Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.

    Example 2:

    Input: [1,2,3,4,5]
    Output: 4
    Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
    Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
    engaging multiple transactions at the same time. You must sell before buying again.

    Example 3:

    Input: [7,6,4,3,1]
    Output: 0
    Explanation: In this case, no transaction is done, i.e. max profit = 0.

    Solution1:

    class Solution:(TLE)
        def maxProfit(self, prices):
            """
            :type prices: List[int]
            :rtype: int
            """
            if len(prices)<=2:
                return self.maxProfit1(prices)
            profit = 0
            for i in range(len(prices)):
                profit = max(profit,self.maxProfit1(prices[:i]) + self.maxProfit1(prices[i-1:]))
            return profit
    
        def maxProfit1(self, prices):
            """
            :type prices: List[int]
            :rtype: int
            """
            if len(prices)<1:
                return 0
            little,profit = prices[0],0
            for i in range(1,len(prices)):
                temp = prices[i] - little
                profit = max(profit,temp)
                little = min(little,prices[i])
            return profit
    

    调用121中的solution,将原list分成两段分别调用。

    Solution2:

    class Solution:
        def maxProfit(self, prices):
            """
            :type prices: List[int]
            :rtype: int
            """
            if len(prices)<=1:
                return 0
            pre = [0 for i in range(len(prices))]
            post = [0 for i in range(len(prices))]
            minprice = prices[0]
            maxprice = prices[-1]
            for i in range(1,len(prices)):
                pre[i] = max(pre[i-1],prices[i]-minprice)
                minprice = min(prices[i],minprice)
            for i in range(len(prices)-2,-1,-1):
                post[i] = max(post[i+1],maxprice-prices[i])
                maxprice = max(prices[i],maxprice)
            res = 0
            for i in range(len(prices)):
                res = max(res,pre[i]+post[i])
            return res
    

    采用两个数组。
    一个保存前i天的最大收益,从前向后遍历可以得到。
    一个保存后i天的最大收益,从后向前遍历可以得到。

    Solution3:

    class Solution:
        def maxProfit(self, prices):
            """
            :type prices: List[int]
            :rtype: int
            """
            sell1,sell2,buy1,buy2 = 0,0,-100000,-100000
            for i in range(len(prices)):
                buy1 = max(buy1,-prices[i])
                sell1 = max(sell1,buy1+prices[i])
                buy2 = max(buy2,sell1-prices[i])
                sell2 = max(sell2,buy2+prices[i])
            return sell2
    

    核心是假设手上最开始只有0元钱,那么如果买入股票的价格为price,手上的钱需要减去这个price,如果卖出股票的价格为price,手上的钱需要加上这个price。
    它定义了4个状态:
    Buy1[i]表示前i天做第一笔交易买入股票后剩下的最多的钱;
    Sell1[i]表示前i天做第一笔交易卖出股票后剩下的最多的钱;
    Buy2[i]表示前i天做第二笔交易买入股票后剩下的最多的钱;
    Sell2[i]表示前i天做第二笔交易卖出股票后剩下的最多的钱;
    那么
    Buy1[i]=max{Buy[i-1],-prices[i]}
    Sell1[i]=max{Sell[i-1],Buy1[i-1]+prices[i]}
    Buy2[i]=max{Buy2[i-1],Sell[i-1]-prices[i]}
    Sell2[i]=max{Sell2[i-1],Buy2[i-1]+prices[i]}

    可以发现上面四个状态都是只与前一个状态有关,所以可以不使用数组而是使用变量来存储即可。

    参考自:https://blog.csdn.net/u012501459/article/details/46514309

  • 相关阅读:
    UNIX网络编程总结三
    UNIX网络编程总结二
    UNIX网络编程总结一
    KVM
    nginx+flask+gevent+uwsgi实现websocket
    Hypervisor
    JBPM4入门——4.封装流程管理的工具类(JbpmUtil)
    JBPM4入门——3.JBPM4开发环境的搭建
    JBPM4入门——2.在eclipse中安装绘制jbpm流程图的插件
    JBPM4入门——1.jbpm简要介绍
  • 原文地址:https://www.cnblogs.com/bernieloveslife/p/9748377.html
Copyright © 2011-2022 走看看