A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given a non-empty string containing only digits, determine the total number of ways to decode it.
Example 1:
Input: "12"
Output: 2
Explanation: It could be decoded as "AB" (1 2) or "L" (12).
Example 2:
Input: "226"
Output: 3
Explanation: It could be decoded as "BZ" (2 26), "VF" (22 6), or "BBF" (2 2 6).
class Solution:
def numDecodings(self, s):
"""
:type s: str
:rtype: int
"""
if len(s)==0 or s[0]=='0':
return 0
dp = [1,1]
for i in range(2,len(s)+1):
if s[i-2:i]=='10' or s[i-2:i]=='20':
dp.append(dp[i-2])
elif 10<int(s[i-2:i])<=26:
dp.append(dp[i-1]+dp[i-2])
elif s[i-1]!='0':
dp.append(dp[i-1])
else:
return 0
return dp[-1]
解题思路:解码有多少种方法。一般求“多少”我们考虑使用dp。状态方程如下:
当s[i-2:i]这两个字符是10~26但不包括10和20这两个数时,比如21,那么可以有两种编码方式(BA,U),所以dp[i]=dp[i-1]+dp[i-2]
当s[i-2:i]等于10或者20时,由于10和20只有一种编码方式,所以dp[i]=dp[i-2]
当s[i-2:i]不在以上两个范围时,如果s[i-1]是0的话,不存在编码方式(因为已经把10、两种可能的都考虑了),否则在01-09或大于26时,dp[i] = dp[i-1]
注意初始化时:dp[0]=1,dp[1]=1
参考自:http://www.cnblogs.com/zuoyuan/p/3783897.html