zoukankan      html  css  js  c++  java
  • 板子

    基本

    缺省源

    #include <bits/stdc++.h>
    #define mp std::make_pair
    #define pb push_back
    #define fi first
    #define se second
    #define gc getchar
    #define pc putchar
    #define ep emplace
    #define eb emplace_back
    #define ctz __builtin_ctz
    typedef unsigned char u8;
    typedef unsigned short u16;
    typedef unsigned int u32;
    typedef long long ll;
    typedef long double ld;
    typedef unsigned long long ull;
    typedef std::pair <int, int> pii;
    typedef std::pair <int, ll> pil;
    typedef std::pair <ll, int> pli;
    typedef std::pair <ll, ll> pll;
    int read() {
    	char c = gc(); int ans = 0; bool flag = true;
    	while (!isdigit(c)) flag &= (c != '-'), c = gc();
    	while (isdigit(c)) ans = ans * 10 + c - '0', c = gc();
    	return flag ? ans : -ans;
    }
    void Write(int x) {
    	if (x < 0) pc('-'), x = -x;
    	if (x < 10) pc(x + '0');
    	else Write(x / 10), pc(x % 10 + '0');
    }
    int min(int x, int y) {return x < y ? x : y;}
    int max(int x, int y) {return x > y ? x : y;}
    void _min(int &x, int y) {if (x > y) x = y;}
    void _max(int &x, int y) {if (x < y) x = y;}
    

    超快读入/输出

    namespace io {
    	const int SIZE = (1 << 21) + 1;
    	char ibuf[SIZE], *iS, *iT, obuf[SIZE], *oS = obuf, *oT = oS + SIZE - 1;
    	inline char getc() {return (iS == iT ? (iT = (iS = ibuf) + fread(ibuf, 1, SIZE, stdin), (iS == iT ? EOF : *iS++)) : *iS++);}
    	inline void flush() {fwrite(obuf, 1, oS - obuf, stdout); oS = obuf;}
    	inline void putc(char x) {*oS++ = x; if (oS == oT) flush();}
    	template <class T>
    	inline void read(T &x) {
    		char ch = getc(); bool flag = false; x = 0;
    		while (!isdigit(ch)) flag |= (ch == '-'), ch = getc();
    		while (isdigit(ch)) x = x * 10 + ch - '0', ch = getc();
    		if (flag) x = -x;
    	}
    	template <class T, class ...Args>
    	inline void read(T &x, Args&... args) {read(x); read(args...);}
    	template <class T>
    	inline void write(T x) {
    		static char stk[128]; int top = 0;
    		if(x == 0) {putc('0'); return;}
    		if(x < 0) putc('-'), x = -x;
    		while (x) stk[top++] = x % 10, x /= 10;
    		while (top) putc(stk[--top] + '0');
    	}
    	template <class T, class ...Args>
    	inline void write(T x, Args... args) {write(x); putc(' '); write(args...);}
    	inline void space() {putc(' ');}
    	inline void endl() {putc('
    ');}
    	struct _flush {~_flush() {flush();}} __flush;
    }
    using io::read; using io::write; using io::space; using io::endl; using io::getc; using io::putc;
    

    模大质数常用函数

    int plus(int x, int y) {return (x += y) >= mod ? x - mod : x;}
    int minus(int x, int y) {return (x -= y) < 0 ? x + mod : x;}
    void _plus(int &x, int y) {if ((x += y) >= mod) x -= mod;}
    void _minus(int &x, int y) {if ((x -= y) < 0) x += mod;}
    ll sqr(int x) {return (ll)x * x % mod;}
    ll power(ll x, int y, ll ans = 1) {
    	for (; y; y >>= 1, x = x * x % mod)
    		if (y & 1) ans = ans * x % mod;
    	return ans;
    }
    ll _inv(int x) {return x == 1 ? 1 : (mod - mod / x) * _inv(mod % x) % mod;}
    void init_fac(int n) {
    	for (int i = fac[0] = 1; i <= n; i++) fac[i] = fac[i - 1] * i % mod;
    	fac_inv[n] = _inv(fac[n]);
    	for (int i = n; i; i--) fac_inv[i - 1] = fac_inv[i] * i % mod;
    }
    ll binom(int x, int y) {return x < y || y < 0 ? 0 : fac[x] * fac_inv[y] % mod * fac_inv[x - y] % mod;}
    

    网络流

    最大流

    namespace maxflow {
    	const int max_N = ?, max_E = ?, INF = 2e9;
    	int nxt[2 * max_E], head[max_N], to[2 * max_E], cap[2 * max_E], tot;
    	int dist[max_N], _head[max_N], n, S, T;
    	void init(int _n, int _S, int _T) {
    		n = _n, S = _S, T = _T, tot = 1;
    		std::fill(head + 1, head + n + 1, 0);
    	}
    	void add_edge(int u, int v, int w) {
    		nxt[++tot] = head[u], head[u] = tot, to[tot] = v, cap[tot] = w;
    		nxt[++tot] = head[v], head[v] = tot, to[tot] = u, cap[tot] = 0;
    	}
    	bool BFS() {
    		std::fill(dist + 1, dist + n + 1, INF);
    		std::queue <int> Q; Q.push(S); dist[S] = 0;
    		while (!Q.empty()) {
    			int cur = Q.front(); Q.pop();
    			for (int i = head[cur]; i; i = nxt[i])
    				if (cap[i] > 0 && dist[to[i]] == INF)
    					dist[to[i]] = dist[cur] + 1, Q.push(to[i]);
    		}
    		return dist[T] < INF;
    	}
    	int dfs(int x, int low) {
    		if (x == T) return low; int used = 0, tmp;
    		for (int &i = _head[x]; i; i = nxt[i])
    			if (cap[i] > 0 && dist[to[i]] == dist[x] + 1) {
    				tmp = dfs(to[i], min(low - used, cap[i]));
    				if (tmp > 0) used += tmp, cap[i] -= tmp, cap[i ^ 1] += tmp;
    				if (used == low) break;
    			}
    		return used;
    	}
    	int solve() {
    		int ans = 0;
    		while (BFS()) std::copy(head + 1, head + n + 1, _head + 1), ans += dfs(S, INF);
    		return ans;
    	}
    }
    

    最小费用最大流

    namespace costflow {
    	const int max_N = ?, max_M = ?, INF = 2e9;
    	int nxt[2 * max_M], head[max_N], to[2 * max_M], cap[2 * max_M], cost[2 * max_M], dist[max_N], _head[max_N];
    	int n, S, T, tot, maxflow, mincost;
    	bool inq[max_N], vis[max_N];
    	void init(int _n, int _S, int _T) {
    		n = _n, S = _S, T = _T, tot = 1;
    		std::fill(head + 1, head + n + 1, 0);
    	}
    	void add_edge(int u, int v, int w, int _cost) {
    		nxt[++tot] = head[u], head[u] = tot, to[tot] = v, cap[tot] = w, cost[tot] = _cost;
    		nxt[++tot] = head[v], head[v] = tot, to[tot] = u, cap[tot] = 0, cost[tot] = -_cost;
    	}
    	bool SPFA() {
    		std::fill(dist + 1, dist + n + 1, INF);
    		std::queue <int> Q; Q.push(T); dist[T] = 0, inq[T] = true;
    		while (!Q.empty()) {
    			int cur = Q.front(); Q.pop(); inq[cur] = false;
    			for (int i = head[cur]; i; i = nxt[i])
    				if (cap[i ^ 1] > 0 && dist[to[i]] > dist[cur] - cost[i]) {
    					dist[to[i]] = dist[cur] - cost[i];
    					if (!inq[to[i]]) Q.push(to[i]), inq[to[i]] = true;
    				}
    		}
    		return dist[S] < INF;
    	}
    	int dfs(int x, int low) {
    		if (x == T) return low; vis[x] = true; int used = 0, tmp;
    		for (int &i = _head[x]; i; i = nxt[i])
    			if (cap[i] > 0 && dist[to[i]] == dist[x] - cost[i] && !vis[to[i]]) {
    				tmp = dfs(to[i], min(low - used, cap[i]));
    				if (tmp > 0) cap[i] -= tmp, cap[i ^ 1] += tmp, used += tmp, mincost += tmp * cost[i];
    				if (used == low) break;
    			}
    		return used;
    	}
    	void solve() {
    		maxflow = mincost = 0;
    		while (SPFA())
    			std::copy(head + 1, head + n + 1, _head + 1),
    			std::fill(vis + 1, vis + n + 1, false), maxflow += dfs(S, INF);
    	}
    }
    

    有源汇有上下界最大流

    namespace bounded_maxflow {
    	int n, S, T, deg[maxflow::max_N];
    	void init(int _n, int _S, int _T) {
    		n = _n, S = _S, T = _T;
    		maxflow::init(n + 2, n + 1, n + 2);
    	}
    	void add_edge(int u, int v, int l, int r) {
    		deg[u] -= l, deg[v] += l, maxflow::add_edge(u, v, r - l);
    	}
    	int solve() {
    		int sum = 0;
    		for (int i = 1; i <= n; i++)
    			if (deg[i] > 0) maxflow::add_edge(n + 1, i, deg[i]), sum += deg[i];
    			else if (deg[i] < 0) maxflow::add_edge(i, n + 2, -deg[i]);
    		maxflow::add_edge(T, S, maxflow::INF);
    		if (maxflow::solve() != sum) return -1;
    		for (int i = 1; i <= n; i++)
    			for (int j = maxflow::head[i]; j; j = maxflow::nxt[j])
    				if (maxflow::to[j] > n) maxflow::cap[j] = maxflow::cap[j ^ 1] = 0;
    		return maxflow::S = S, maxflow::T = T, maxflow::solve();
    	}
    }
    

    字符串

    exKMP

    namespace exKMP {
    	const int max_N = ?;
    	char A[max_N];
    	int nxt[max_N], extend[max_N];
    	void get_nxt(char *s, int n) {
    		std::memcpy(A + 1, s + 1, n); A[n + 1] = 0; nxt[1] = n;
    		nxt[2] = std::mismatch(A + 2, A + n + 1, A + 1).fi - (A + 2);
    		for (int i = 3, tmp = 2; i <= n; i++) {
    			nxt[i] = max(0, min(nxt[i - tmp + 1], nxt[tmp] + tmp - i));
    			nxt[i] = std::mismatch(A + i + nxt[i], A + n + 1, A + nxt[i] + 1).fi - (A + i);
    			if (i + nxt[i] > tmp + nxt[tmp]) tmp = i; 
    		}
    	}
    	void get_extend(char *B, int m) {
    		extend[1] = std::mismatch(A + 1, A + n + 1, B + 1).fi - (A + 1);
    		for (int i = 2, tmp = 1; i <= m; i++) {
    			extend[i] = max(0, min(nxt[i - tmp + 1], tmp + extend[tmp] - i));
    			extend[i] = std::mismatch(B + i + extend[i], B + m + 1, A + extend[i] + 1).fi - (B + i);
    			if (i + extend[i] > tmp + extend[tmp]) tmp = i;
    		}
    	}
    }
    

    数据结构

    并查集

    namespace DSU {
    	int fa[max_N];
    	void init(int n) {std::iota(fa + 1, fa + n + 1, 1);}
    	int anc(int x) {return fa[x] == x ? x : fa[x] = anc(fa[x]);}
    	void link(int x, int y) {fa[anc(x)] = anc(y);}
    	bool connected(int x, int y) {return anc(x) == anc(y);}
    	int num() {
    		int ans = 0;
    		for (int i = 1; i <= n; i++) ans += (fa[i] == i);
    		return ans;
    	}
    }
    

    线性代数

    拟阵交

    namespace matriod_cross {
    	const int max_N = ?, INF = 2e9;
    	bool flag[max_N];
    	std::vector <int> G[max_N];
    	int n, pre[max_N], dist[max_N];
    	namespace matriod_1 {
    		void build() {?}
    		bool ins(int x) {?}
    	}
    	namespace matriod_2 {
    		void build() {?}
    		bool ins(int x) {?}
    	}
    	bool find_path() {
    		for (int i = 1; i <= n + 2; i++) G[i].clear();
    		matriod_1::build(), matriod_2::build();
    		for (int i = 1; i <= n; i++) {
    			if (flag[i]) continue; bool tmp = true;
    			if (matriod_1::ins(i)) G[n + 1].pb(i); else tmp = false;
    			if (matriod_2::ins(i)) G[i].pb(n + 2); else tmp = false;
    			if (tmp) return flag[i] = true;
    		}
    		for (int i = 1; i <= n; i++) {
    			if (!flag[i]) continue; flag[i] = false;
    			matriod_1::build(), matriod_2::build();
    			for (int j = 1; j <= n; j++) {
    				if (i == j || flag[j]) continue;
    				if (matriod_1::ins(j)) G[i].pb(j);
    				if (matriod_2::ins(j)) G[j].pb(i);
    			}
    			flag[i] = true;
    		}
    		std::fill(dist + 1, dist + n + 3, INF);
    		std::queue <int> Q; Q.push(n + 1); dist[n + 1] = 0;
    		while (!Q.empty()) {
    			int cur = Q.front(); Q.pop();
    			for (auto i : G[cur]) if (dist[i] == INF)
    				dist[i] = dist[cur] + 1, pre[i] = cur, Q.push(i);
    		}
    		if (dist[n + 2] == INF) return false;
    		for (int i = pre[n + 2]; i != n + 1; i = pre[i]) flag[i] ^= 1;
    		return true;
    	}
    	int solve(int _n) {
    		n = _n; while (find_path());
    		return std::accumulate(flag + 1, flag + n + 1, 0);
    	}
    }
    
  • 相关阅读:
    tomcat最大连接数
    【转】性能测试总结---测试流程篇
    nginx访问量统计
    在Excel中计算过去某一天到今天一共多少天
    Linux服务器/etc/profile
    Linux服务器安装MySQL
    idea无法识别maven项目
    python3 实现RC4加解密
    Python实现128-ECB 解密
    BlowFish加解密原理与代码实现
  • 原文地址:https://www.cnblogs.com/bestlxm/p/14253558.html
Copyright © 2011-2022 走看看