zoukankan      html  css  js  c++  java
  • 聚类系数可变无标度网络模型Holme-Kim HK模型

    # -*- coding: cp936 -*-
    import random
    import networkx as nx
    from networkx.generators.classic import empty_graph
    
    def powerlaw_cluster_graph(n, m, p, seed=None):
        """Holme and Kim algorithm for growing graphs with powerlaw
        degree distribution and approximate average clustering.
    
        Parameters
        ----------
        n : int
            the number of nodes
        m : int
            the number of random edges to add for each new node
        p : float,
            Probability of adding a triangle after adding a random edge
        seed : int, optional
            Seed for random number generator (default=None).
    
        Notes
        -----
        The average clustering has a hard time getting above a certain
        cutoff that depends on ``m``.  This cutoff is often quite low.  The
        transitivity (fraction of triangles to possible triangles) seems to
        decrease with network size.
    
        It is essentially the Barabási–Albert (BA) growth model with an
        extra step that each random edge is followed by a chance of
        making an edge to one of its neighbors too (and thus a triangle).
    
        This algorithm improves on BA in the sense that it enables a
        higher average clustering to be attained if desired.
    
        It seems possible to have a disconnected graph with this algorithm
        since the initial ``m`` nodes may not be all linked to a new node
        on the first iteration like the BA model.
    
        Raises
        ------
        NetworkXError
            If ``m`` does not satisfy ``1 <= m <= n`` or ``p`` does not
            satisfy ``0 <= p <= 1``.
    
        References
        ----------
        .. [1] P. Holme and B. J. Kim,
           "Growing scale-free networks with tunable clustering",
           Phys. Rev. E, 65, 026107, 2002.
        """
    
        if m < 1 or n < m:
            raise nx.NetworkXError(
                  "NetworkXError must have m>1 and m<n, m=%d,n=%d"%(m,n))
    
        if p > 1 or p < 0:
            raise nx.NetworkXError(
                  "NetworkXError p must be in [0,1], p=%f"%(p))
        if seed is not None:
            random.seed(seed)
    
        G=empty_graph(m) # add m initial nodes (m0 in barabasi-speak)
        G.name="Powerlaw-Cluster Graph"
        repeated_nodes=G.nodes()  # list of existing nodes to sample from
                               # with nodes repeated once for each adjacent edge
        source=m               # next node is m
        while source<n:        # Now add the other n-1 nodes
            possible_targets = _random_subset(repeated_nodes,m)
            # do one preferential attachment for new node
            target=possible_targets.pop()
            G.add_edge(source,target)
            repeated_nodes.append(target) # add one node to list for each new link
            count=1
            while count<m:  # add m-1 more new links
                if random.random()<p: # clustering step: add triangle
                    neighborhood=[nbr for nbr in G.neighbors(target) 
                                   if not G.has_edge(source,nbr) 
                                   and not nbr==source]
                    if neighborhood: # if there is a neighbor without a link
                        nbr=random.choice(neighborhood)
                        G.add_edge(source,nbr) # add triangle
                        repeated_nodes.append(nbr)
                        count=count+1
                        continue # go to top of while loop
                # else do preferential attachment step if above fails
                target=possible_targets.pop()
                G.add_edge(source,target)
                repeated_nodes.append(target)
                count=count+1
    
            repeated_nodes.extend([source]*m)  # add source node to list m times
            source += 1
        return G
    def _random_subset(seq,m):
        """ Return m unique elements from seq.
    
        This differs from random.sample which can return repeated
        elements if seq holds repeated elements.
        :param seq:
        :param m:
        :return:
        """
        targets=set()
        while len(targets)<m:
            x=random.choice(seq)
            targets.add(x)
        return targets
    if __name__=="__main__":
        n=input(" the number of nodes:")
        m=input("the number of random edges to add for each new node:")
        p=input("Probability of adding a triangle after adding a random edge:")
        g=powerlaw_cluster_graph(n, m, p, seed=None)
        node = list(g.nodes())
        edge = list(g.edges())
        # with open('node.pickle', 'wb') as f:
        #    pickle.dump(node, f)
        #with open('edge.pickle', 'wb') as f:
        #   pickle.dump(edge, f)
        #print(node)
        #print(edge)
        #edge = list(edge)
        fil = open('edge.txt', 'w')
        for i in edge:
            fil.write('{} {}
    '.format(*i))
        fil.close()
    

      生成无标度网络,通过P控制聚类系数

  • 相关阅读:
    c++看题
    理想化
    thin mission
    编程时 和 thinking
    tiny mission 2021 10 20
    A Magic Lamp HDU
    Poj 3370
    鸽巢原理(抽屉原理)
    Miller-Rabin质数测试
    Nim or not Nim? HDU
  • 原文地址:https://www.cnblogs.com/bethansy/p/7122934.html
Copyright © 2011-2022 走看看