zoukankan      html  css  js  c++  java
  • 斐波那契查找原理详解与实现

    最近看见一个要求仅使用加法减法实现二分查找的题目,百度了一下,原来要用到一个叫做斐波那契查找的的算法。查百度,是这样说的:

    斐波那契查找与折半查找很相似,他是根据斐波那契序列的特点对有序表进行分割的。他要求开始表中记录的个数为某个斐波那契数小1,即n=F(k)-1;

     开始将k值与第F(k-1)位置的记录进行比较(及mid=low+F(k-1)-1),比较结果也分为三种

     1)相等,mid位置的元素即为所求

     2)>   ,low=mid+1,k-=2;说明:low=mid+1说明待查找的元素在[mid+1,hign]范围内,k-=2 说明范围[mid+1,high]内的元素个数为n-(F(k-1))= Fk-1-F(k-1)=Fk-F(k-1)-1=F(k-2)-1个,所以可以递归的应用斐波那契查找

     3)<    ,high=mid-1,k-=1;说明:low=mid+1说明待查找的元素在[low,mid-1]范围内,k-=1 说明范围[low,mid-1]内的元素个数为F(k-1)-1个,所以可以递归的应用斐波那契查找


    大部分说明都忽略了一个条件的说明:n=F(k)-1, 表中记录的个数为某个斐波那契数小1。这是为什么呢?

    我想了很久,终于发现,原因其实很简单:

    是为了格式上的统一,以方便递归或者循环程序的编写。表中的数据是F(k)-1个,使用mid值进行分割又用掉一个,那么剩下F(k)-2个。正好分给两个子序列,每个子序列的个数分别是F(k-1)-1与F(k-2)-1个,格式上与之前是统一的。不然的话,每个子序列的元素个数有可能是F(k-1),F(k-1)-1,F(k-2),F(k-2)-1个,写程序会非常麻烦。

    实现代码如下:

    // 斐波那契查找.cpp   
      
    #include "stdafx.h"  
    #include <memory>  
    #include  <iostream>  
    using namespace std;  
      
    const int max_size=20;//斐波那契数组的长度  
      
    /*构造一个斐波那契数组*/   
    void Fibonacci(int * F)  
    {  
        F[0]=0;  
        F[1]=1;  
        for(int i=2;i<max_size;++i)  
            F[i]=F[i-1]+F[i-2];  
    }  
      
    /*定义斐波那契查找法*/    
    int Fibonacci_Search(int *a, int n, int key)  //a为要查找的数组,n为要查找的数组长度,key为要查找的关键字  
    {  
      int low=0;  
      int high=n-1;  
        
      int F[max_size];  
      Fibonacci(F);//构造一个斐波那契数组F   
      
      int k=0;  
      while(n>F[k]-1)//计算n位于斐波那契数列的位置  
          ++k;  
      
      int  * temp;//将数组a扩展到F[k]-1的长度  
      temp=new int [F[k]-1];  
      memcpy(temp,a,n*sizeof(int));  
      
      for(int i=n;i<F[k]-1;++i)  
         temp[i]=a[n-1];  
        
      while(low<=high)  
      {  
        int mid=low+F[k-1]-1;  
        if(key<temp[mid])  
        {  
          high=mid-1;  
          k-=1;  
        }  
        else if(key>temp[mid])  
        {  
         low=mid+1;  
         k-=2;  
        }  
        else  
        {  
           if(mid<n)  
               return mid; //若相等则说明mid即为查找到的位置  
           else  
               return n-1; //若mid>=n则说明是扩展的数值,返回n-1  
        }  
      }    
      delete [] temp;  
      return -1;  
    }  
      
    int _tmain(int argc, _TCHAR* argv[])  
    {  
        int a[] = {0,16,24,35,47,59,62,73,88,99};  
        int key=100;  
        int index=Fibonacci_Search(a,sizeof(a)/sizeof(int),key);  
        cout<<key<<" is located at:"<<index;  
        system("PAUSE");  
        return 0;  
    }  

     

  • 相关阅读:
    springboot 和 spring clould 的版本匹配问题
    行到水穷处,坐看云起时!
    转: 从单体应用 -> SOA--> 微服务 ,服务治理 [熔断,限流,降级,服务恢复,服务容错,监控等等]---> RPC ---> 下一代技术[Service Mesh]
    spring-boot自定义线程池
    千与千寻的内容抓手
    哲学三问
    简约的人生
    关于中间件整理
    此心光明,亦复何言!
    能容的下你身边比你优秀的人---是一种修行
  • 原文地址:https://www.cnblogs.com/bethunebtj/p/4839576.html
Copyright © 2011-2022 走看看