zoukankan      html  css  js  c++  java
  • Codeforces Round #FF (Div. 1) B. DZY Loves Modification


    枚举行取了多少次,如行取了i次,列就取了k-i次,假设行列单独贪心考虑然后相加,那么有i*(k-i)个交点是多出来的:dpr[i]+dpc[k-i]-i*(k-i)*p

    枚举i取最大值。。。。


    B. DZY Loves Modification
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    As we know, DZY loves playing games. One day DZY decided to play with a n × m matrix. To be more precise, he decided to modify the matrix with exactly k operations.

    Each modification is one of the following:

    1. Pick some row of the matrix and decrease each element of the row by p. This operation brings to DZY the value of pleasure equal to the sum of elements of the row before the decreasing.
    2. Pick some column of the matrix and decrease each element of the column by p. This operation brings to DZY the value of pleasure equal to the sum of elements of the column before the decreasing.

    DZY wants to know: what is the largest total value of pleasure he could get after performing exactly k modifications? Please, help him to calculate this value.

    Input

    The first line contains four space-separated integers n, m, k and p (1 ≤ n, m ≤ 103; 1 ≤ k ≤ 106; 1 ≤ p ≤ 100).

    Then n lines follow. Each of them contains m integers representing aij (1 ≤ aij ≤ 103) — the elements of the current row of the matrix.

    Output

    Output a single integer — the maximum possible total pleasure value DZY could get.

    Sample test(s)
    input
    2 2 2 2
    1 3
    2 4
    
    output
    11
    
    input
    2 2 5 2
    1 3
    2 4
    
    output
    11
    
    Note

    For the first sample test, we can modify: column 2, row 2. After that the matrix becomes:

    1 1
    0 0
    
    

    For the second sample test, we can modify: column 2, row 2, row 1, column 1, column 2. After that the matrix becomes:

    -3 -3
    -2 -2
    


    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <queue>
    
    using namespace std;
    
    typedef long long int LL;
    
    const int maxn=1100;
    
    LL dpr[maxn*maxn],dpc[maxn*maxn];
    LL col[maxn],row[maxn];
    LL a[maxn][maxn];
    priority_queue<LL> qc,qr;
    int n,m,k; LL p;
    
    int main()
    {
        scanf("%d%d%d%I64d",&n,&m,&k,&p);
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<m;j++)
            {
                scanf("%I64d",&a[i][j]);
                col[j]+=a[i][j];
                row[i]+=a[i][j];
            }
        }
        for(int i=0;i<n;i++)
            qr.push(row[i]);
        for(int i=0;i<m;i++)
            qc.push(col[i]);
        dpr[0]=dpc[0]=0;
        for(int i=1;i<=k;i++)
        {
            LL cc=qc.top(); qc.pop();
            LL rr=qr.top(); qr.pop();
            dpr[i]=dpr[i-1]+rr;
            dpc[i]=dpc[i-1]+cc;
            qc.push(cc-p*n);
            qr.push(rr-p*m);
        }
        LL ans=dpr[0]+dpc[k];
        for(int i=1;i<=k;i++)
            ans=max(ans,dpr[i]+dpc[k-i]-1LL*i*(k-i)*p);
        printf("%I64d",ans);
        return 0;
    }
    



  • 相关阅读:
    TypeError: write() argument must be str, not bytes报错
    md5加密报错解决方法(TypeError: Unicode-objects must be encoded before hashing)
    认识requests库,以及安装方法
    python开发必备pycharm专业版破解方法
    接口测试面试题
    jmeter断言
    大顶堆和小顶堆模版
    快速幂带取余模版
    二叉树的前中后序遍历的递归与非递归算法模版
    KMP算法模版
  • 原文地址:https://www.cnblogs.com/bhlsheji/p/4006351.html
Copyright © 2011-2022 走看看