zoukankan      html  css  js  c++  java
  • HDU 2853 Assignment(KM最大匹配好题)

    HDU 2853 Assignment

    题目链接

    题意:如今有N个部队和M个任务(M>=N),每一个部队完毕每一个任务有一点的效率,效率越高越好。可是部队已经安排了一定的计划,这时须要我们尽量用最小的变动,使得全部部队效率之和最大。求最小变动的数目和变动后和变动前效率之差。

    思路:对于怎样保证改变最小,没思路,看了别人题解,恍然大悟,表示想法很机智

    试想,假设能让原来那些匹配边,比其它匹配出来总和同样的权值还大,对结果又不影响,那就简单了,这个看似不能做到,事实上是能够做到的

    数字最多选出50个,所以把每一个数字乘上一个大于50的数字k,然后原来匹配的权值多+1,这样每k倍数字代表了原来的1,而求出来的即使有原来的多匹配的,总权值等于也不会多1,跟原来的结果一样,又保证了跟其它匹配方式相比,这个优先级更大,很的巧妙

    代码:

    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    using namespace std;
    
    const int MAXNODE = 55;
    
    typedef int Type;
    const Type INF = 0x3f3f3f3f;
    
    struct KM {
    	int n, m;
    	Type g[MAXNODE][MAXNODE];
    	Type Lx[MAXNODE], Ly[MAXNODE], slack[MAXNODE];
    	int left[MAXNODE], right[MAXNODE];
    	bool S[MAXNODE], T[MAXNODE];
    
    	void init(int n, int m) {
    		this->n = n;
    		this->m = m;
    		for (int i = 0; i < n; i++)
    			for (int j = 0; j < m; j++)
    				g[i][j] = -INF;
    	}
    
    	void add_Edge(int u, int v, Type val) {
    		g[u][v] = val;
    	}
    
    	bool dfs(int i) {
    		S[i] = true;
    		for (int j = 0; j < m; j++) {
    			if (T[j]) continue;
    			Type tmp = Lx[i] + Ly[j] - g[i][j];
    			if (!tmp) {
    				T[j] = true;
    				if (left[j] == -1 || dfs(left[j])) {
    					left[j] = i;
    					right[i] = j;
    					return true;
    				}
    			} else slack[j] = min(slack[j], tmp);
    		}
    		return false;
    	}
    
    	void update() {
    		Type a = INF;
    		for (int i = 0; i < m; i++)
    			if (!T[i]) a = min(a, slack[i]);
    		for (int i = 0; i < n; i++)
    			if (S[i]) Lx[i] -= a;
    		for (int i = 0; i < m; i++)
    			if (T[i]) Ly[i] += a;
    	}
    
    	int to[MAXNODE];
    
    	Type km() {
    		memset(left, -1, sizeof(left));
    		memset(right, -1, sizeof(right));
    		memset(Ly, 0, sizeof(Ly));
    		for (int i = 0; i < n; i++) {
    			Lx[i] = -INF;
    			for (int j = 0; j < m; j++)
    				Lx[i] = max(Lx[i], g[i][j]);
    		}
    		for (int i = 0; i < n; i++) {
    			for (int j = 0; j < m; j++) slack[j] = INF;
    			while (1) {
    				memset(S, false, sizeof(S));
    				memset(T, false, sizeof(T));
    				if (dfs(i)) break;
    				else update();
    			}
    		}
    		Type ans = 0;
    		for (int i = 0; i < n; i++) {
    			if (right[i] == to[i]) ans += (g[i][right[i]] - 1) / (n + 1);
    			else ans += g[i][right[i]] / (n + 1);
    		}
    		return ans;
    	}
    
    	void solve() {
    		for (int i = 0; i < n; i++)
    			for (int j = 0; j < m; j++) {
    				scanf("%d", &g[i][j]);
    				g[i][j] *= (n + 1);
    			}
    		int pre = 0;
    		for (int i = 0; i < n; i++) {
    			scanf("%d", &to[i]);
    			to[i]--;
    			pre += g[i][to[i]] / (n + 1);
    			g[i][to[i]]++;
    		}
    		int cnt = 0;
    		int ans = km() - pre;
    		for (int i = 0; i < n; i++) if (right[i] != to[i]) cnt++;
    		printf("%d %d
    ", cnt, ans);
    	}
    } gao;
    
    int n, m;
    
    int main() {
    	while (~scanf("%d%d", &n, &m)) {
    		gao.init(n, m);
    		gao.solve();
    	}
    	return 0;
    }


  • 相关阅读:
    多数据源配置
    Oracle创建JOB
    2新建Data Adapter
    注解的CRUD;重点:多对一和一对多处理
    Mybatis分页+使用注解开发!
    继续mybatis配置resultMap;讲解日志部分
    Today has a day off.
    Mybatis其他配置!
    Mybatis优化配置!
    Mybatis的CRUD
  • 原文地址:https://www.cnblogs.com/bhlsheji/p/4070641.html
Copyright © 2011-2022 走看看